Showing 1 - 10 of 312
We use a quantile-based measure of conditional skewness (or asymmetry) that is robust to outliers and therefore particularly suited for recalcitrant series such as emerging market returns. Our study is on the following portfolio returns: developed markets, emerging markets, the world, and...
Persistent link: https://www.econbiz.de/10009009566
Multi-period-ahead forecasts of returns' variance are used in most areas of applied finance where long horizon measures of risk are necessary. Yet, the major focus in the variance forecasting literature has been on one-period-ahead forecasts. In this paper, we compare several approaches of...
Persistent link: https://www.econbiz.de/10011976983
We consider a log-linearized version of a discounted rents model to price commercial real estate as an alternative to traditional hedonic models. First, we verify a key implication of the model, namely, that cap rates forecast commercial real estate returns. We do this using two different...
Persistent link: https://www.econbiz.de/10012713176
"We consider various MIDAS (Mixed Data Sampling) regression models to predict volatility. The models differ in the specification of regressors (squared returns, absolute returns, realized volatility, realized power, and return ranges), in the use of daily or intra-daily (5-minute) data, and in...
Persistent link: https://www.econbiz.de/10002482290
Persistent link: https://www.econbiz.de/10002482316
We use the MIDAS (Mixed Data Sampling) approach to study regressions of future realized volatility at low-frequency horizons (one to four weeks) on lagged daily and intra-daily (1) squared returns, (2) absolute returns, (3) realized volatility, (4) realized power and (5) return ranges. We...
Persistent link: https://www.econbiz.de/10012713532
This paper studies the ICAPM intertemporal relation between the conditional mean and the conditional variance of the aggregate stock market return. We introduce a new estimator that forecasts monthly variance with past daily squared returns - the Mixed Data Sampling (or MIDAS) approach. Using...
Persistent link: https://www.econbiz.de/10012713556
We consider various MIDAS (Mixed Data Sampling) regression models to predict volatility. The models differ in the specification of regressors (squared returns, absolute returns, realized volatility, realized power, and return ranges), in the use of daily or intra-daily (5-minute) data, and in...
Persistent link: https://www.econbiz.de/10012755731
This paper studies the ICAPM intertemporal relation between the conditional mean and the conditional variance of the aggregate stock market return. We introduce a new estimator that forecasts monthly variance with past daily squared returns -- the Mixed Data Sampling (or MIDAS) approach. Using...
Persistent link: https://www.econbiz.de/10012755732
We explore Mixed Data Sampling (henceforth MIDAS) regression models. The regressions involve time series data sampled at different frequencies. Volatility and related processes are our prime focus, though the regression method has wider applications in macroeconomics and finance, among other...
Persistent link: https://www.econbiz.de/10012713330