Showing 1 - 10 of 109
Persistent link: https://www.econbiz.de/10001646219
Persistent link: https://www.econbiz.de/10003023786
Persistent link: https://www.econbiz.de/10009613610
Classical parametric estimation methods applied to nonlinear regression and limited-dependent-variable models are very sensitive to misspecification and data errors. On the other hand, semiparametric and nonparametric methods, which are not restricted by parametric assumptions, require more data...
Persistent link: https://www.econbiz.de/10009618360
Persistent link: https://www.econbiz.de/10009581094
Persistent link: https://www.econbiz.de/10009627285
Persistent link: https://www.econbiz.de/10001743569
Many methods of computational statistics lead to matrix-algebra or numerical- mathematics problems. For example, the least squares method in linear regression reduces to solving a system of linear equations. The principal components method is based on finding eigenvalues and eigenvectors of a...
Persistent link: https://www.econbiz.de/10003024181
Implied trinomial trees (ITTs) present an analogous extension of trinomial trees proposed by Derman, Kani, and Chriss (1996). Like their binomial counterparts, they can fit the market volatility smile and actually converge to the same continuous limit as binomial trees. In addition, they allow...
Persistent link: https://www.econbiz.de/10003035960
Most dimension reduction methods based on nonparametric smoothing are highly sensitive to outliers and to data coming from heavy-tailed distributions. We show that the recently proposed methods by Xia et al. (2002) can be made robust in such a way that preserves all advantages of the original...
Persistent link: https://www.econbiz.de/10003036534