Showing 1 - 10 of 174
We use noncausal autoregressions to examine the persistence properties of quarterly U.S. consumer price inflation from 1970:1.2012:2. These nonlinear models capture the autocorrelation structure of the inflation series as accurately as their conventional causal counterparts, but they allow for...
Persistent link: https://www.econbiz.de/10009724820
Persistent link: https://www.econbiz.de/10010394573
Persistent link: https://www.econbiz.de/10003280702
Persistent link: https://www.econbiz.de/10003338294
Persistent link: https://www.econbiz.de/10003465751
In this paper, we propose a Bayesian estimation and prediction procedure for noncausal autoregressive (AR) models. Specifically, we derive the joint posterior density of the past and future errors and the parameters, which gives posterior predictive densities as a byproduct. We show that the...
Persistent link: https://www.econbiz.de/10015222210
In this paper, we propose a simulation-based method for computing point and density forecasts for univariate noncausal and non-Gaussian autoregressive processes. Numerical methods are needed to forecast such time series because the prediction problem is generally nonlinear and no analytic...
Persistent link: https://www.econbiz.de/10015222212
Lagged variables are often used as instruments when the generalized method of moments (GMM) is applied to time series data. We show that if these variables follow noncausal autoregressive processes, their lags are not valid instruments and the GMM estimator is inconsistent. Moreover, in this...
Persistent link: https://www.econbiz.de/10015222213
The paper studies a factor GARCH model and develops test procedures which can be used to test the number of factors needed to model the conditional heteroskedasticity in the considered time series vector. Assuming normally distributed errors the parameters of the model can be straightforwardly...
Persistent link: https://www.econbiz.de/10015222250
In this paper, we propose a new noncausal vector autoregressive (VAR) model for non-Gaussian time series. The assumption of non-Gaussianity is needed for reasons of identifiability. Assuming that the error distribution belongs to a fairly general class of elliptical distributions, we develop an...
Persistent link: https://www.econbiz.de/10015222252