Showing 1 - 10 of 21
The empirical likelihood cannot be used directly sometimes when an infinite dimensional parameter of interest is involved. To overcome this difficulty, the sieve empirical likelihoods are introduced in this paper. Based on the sieve empirical likelihoods, a unified procedure is developed for...
Persistent link: https://www.econbiz.de/10009455733
Generalized Linear Models are a widely used method to obtain parametric es- timates for the mean function. They have been further extended to allow the re- lationship between the mean function and the covariates to be more flexible via Generalized Additive Models. However the fixed variance...
Persistent link: https://www.econbiz.de/10011090997
This paper proposes a robust forecasting method for non-stationary time series. The time series is modelled using non-parametric heteroscedastic regression, and fitted by a localized MM-estimator, combining high robustness and large efficiency. The proposed method is shown to produce reliable...
Persistent link: https://www.econbiz.de/10011092158
In this paper we give the outline of a research project developed in a cooperation between the actuarial, financial and statistical research groups of the Faculty of Economics and Applied Economics and the research group on statistics in the Mathematical Department. The main purpose consists...
Persistent link: https://www.econbiz.de/10008684427
This paper proposes a robust forecasting method for non-stationary time series. The time series is modelled using non-parametric heteroscedastic regression, and fitted by a localized MM-estimator, combining high robustness and large efficiency. The proposed method is shown to produce reliable...
Persistent link: https://www.econbiz.de/10013135866
Generalized Linear Models are a widely used method to obtain parametric estimates for the mean function. They have been further extended to allow the relationship between the mean function and the covariates to be more flexible via Generalized Additive Models. However the fixed variance...
Persistent link: https://www.econbiz.de/10013135869
Generalized Linear Models are a widely used method to obtain parametric estimates for the mean function. They have been further extended to allow the relationship between the mean function and the covariates to be more flexible via Generalized Additive Models. However the fixed variance...
Persistent link: https://www.econbiz.de/10013137218
This paper proposes a robust forecasting method for non-stationary time series. The time series is modelled using non-parametric heteroscedastic regression, and fitted by a localized MM-estimator, combining high robustness and large efficiency. The proposed method is shown to produce reliable...
Persistent link: https://www.econbiz.de/10013137219
Generalized Linear Models are a widely used method to obtain parametric estimates for the mean function. They have been further extended to allow the relationship between the mean function and the covariates to be more flexible via Generalized Additive Models. However the fixed variance...
Persistent link: https://www.econbiz.de/10013137711
The objective of this paper is to introduce the break preserving local linear (BPLL) estimator for the estimation of unstable volatility functions. Breaks in the structure of the conditional mean and/or the volatility functions are common in Finance. Markov switching models (Hamilton, 1989) and...
Persistent link: https://www.econbiz.de/10013155274