Showing 1 - 5 of 5
In this article a procedure is proposed to simulate fractional fields, which are non Gaussian counterpart of the fractional Brownian motion. These fields, called real harmonizable (multi)fractional Lévy motions, allow fixing the Hölder exponent at each point. FracSim is an R package...
Persistent link: https://www.econbiz.de/10005101492
In this paper we establish a spectral representation of any symmetric stable self-similar process in terms of multiplicative flows and cocycles. Applying the Lamperti transformation we obtain a unique decomposition of a symmetric stable self-similar process into three independent parts: mixed...
Persistent link: https://www.econbiz.de/10009003605
Continuous time random walks (CTRWs) are used in physics to model anomalous diffusion, by incorporating a random waiting time between particle jumps. In finance, the particle jumps are log-returns and the waiting times measure delay between transactions. These two random variables (log-return...
Persistent link: https://www.econbiz.de/10005099020
Continuous time random walks impose a random waiting time before each particle jump. Scaling limits of heavy tailed continuous time random walks are governed by fractional evolution equations. Space-fractional derivatives describe heavy tailed jumps, and the time-fractional version codes heavy...
Persistent link: https://www.econbiz.de/10005099260
The innovations algorithm can be used to obtain parameter estimates for periodically stationary time series models. In this paper, we compute the asymptotic distribution for these estimates in the case, where the innovations have a finite fourth moment. These asymptotic results are useful to...
Persistent link: https://www.econbiz.de/10014064458