Showing 1 - 10 of 277
We compute the breakdown point of the subsampling quantile of a general statistic, and show that it is increasing in the subsampling block size and the breakdown point of the statistic. These results imply fragile subsampling quantiles for moderate block sizes, also when subsampling procedures...
Persistent link: https://www.econbiz.de/10005816513
We study the robustness of block resampling procedures for time series. We first derive a set of formulas to quantify their quantile breakdown point. For the block bootstrap and the sub- sampling, we find a very low quantile breakdown point. A similar robustness problem arises in relation to...
Persistent link: https://www.econbiz.de/10008479295
We study the robustness of block resampling procedures for time series. We first derive a set of formulas to characterize their quantile breakdown point. For the moving block bootstrap and the subsampling, we find a very low quantile breakdown point. A similar robustness problem arises in...
Persistent link: https://www.econbiz.de/10003971115
Testing procedures for predictive regressions with lagged autoregressive variables imply a suboptimal inference in presence of small violations of ideal assumptions. We propose a novel testing framework resistant to such violations, which is consistent with nearly integrated regressors and...
Persistent link: https://www.econbiz.de/10009721331
We characterize the robustness of subsampling procedures by deriving a formula for the breakdown point of subsampling quantiles. This breakdown point can be very low for moderate subsampling block sizes, which implies the fragility of subsampling procedures, even if they are applied to robust...
Persistent link: https://www.econbiz.de/10003394379
Testing procedures for predictive regressions with lagged autoregressive variables imply a suboptimal inference in presence of small violations of ideal assumptions. We propose a novel testing framework resistant to such violations, which is consistent with nearly integrated regressors and...
Persistent link: https://www.econbiz.de/10013105355
This paper investigates the finite sample properties of a range of inference methods for propensity score-based matching and weighting estimators frequently applied to evaluate the average treatment effect on the treated. We analyse both asymptotic approximations and bootstrap methods for...
Persistent link: https://www.econbiz.de/10011479224
We propose a nonparametric likelihood inference method for the integrated volatility under high frequency financial data. The nonparametric likelihood statistic, which contains the conventional statistics such as empirical likelihood and Pearson's chi-square as special cases, is not...
Persistent link: https://www.econbiz.de/10011122384
This paper studies robustness of bootstrap inference methods for instrumental variable (IV)regression models. We consider test statistics for parameter hypotheses based on the IV estimatorand generalized method of trimmed moments (GMTM) estimator introduced by Cížek (2008, 2009),and compare...
Persistent link: https://www.econbiz.de/10011126113
This paper studies robustness of bootstrap inference methods for instrumental variable (IV)regression models. We consider test statistics for parameter hypotheses based on the IV estimatorand generalized method of trimmed moments (GMTM) estimator introduced by Cížek (2008, 2009),and compare...
Persistent link: https://www.econbiz.de/10010734584