Showing 1 - 10 of 303
This paper proposes a new approximation method for pricing barrier options with discrete monitoring under stochastic volatility environment. In particular, the integration-by-parts formula and the duality formula in Malliavin calculus are effectively applied in an asymptotic expansion approach....
Persistent link: https://www.econbiz.de/10008478846
This paper proposes a new approximation method for pricing barrier options with discrete monitoring under stochastic volatility environment. In particular, the integration-by-parts formula and the duality formula in Malliavin calculus are effectively applied in pricing barrier options with...
Persistent link: https://www.econbiz.de/10008519553
This paper introduces a new approximation scheme for solving high-dimensional semilinear partial differential equations (PDEs) and backward stochastic differential equations (BSDEs). First, we decompose a target semilinear PDE (BSDE) into two parts, namely "dominant" linear and "small" nonlinear...
Persistent link: https://www.econbiz.de/10013250324
Persistent link: https://www.econbiz.de/10014383870
This paper presents a mathematical validity for an asymptotic expansion scheme of the solutions to the forward-backward stochastic differential equations (FBSDEs) in terms of a perturbed driver in the BSDE and a small diffusion in the FSDE. This computational scheme was proposed by...
Persistent link: https://www.econbiz.de/10013063102
This paper proposes a unified method for precise estimates of the error bounds in asymptotic expansions of an option price and its Greeks (sensitivities) under a stochastic volatility model. More generally, we also derive an error estimate for an asymptotic expansion around a partially elliptic...
Persistent link: https://www.econbiz.de/10013063101
Persistent link: https://www.econbiz.de/10012616192
Persistent link: https://www.econbiz.de/10012813594
Persistent link: https://www.econbiz.de/10012813680
This paper proposes a new analytical approximation scheme for the representation of the forward- backward stochastic differential equations (FBSDEs) of Ma and Zhang (2002). In particular, we obtain an error estimate for the scheme applying Malliavin calculus method for the forward SDEs combined...
Persistent link: https://www.econbiz.de/10013007919