Showing 1 - 10 of 1,122
Estimation of average treatment effects under unconfounded or ignorable treatment assignment is often hampered by lack of overlap in the covariate distributions between treatment groups. This lack of overlap can lead to imprecise estimates, and can make commonly used estimators sensitive to the...
Persistent link: https://www.econbiz.de/10010549918
Persistent link: https://www.econbiz.de/10003340057
Estimation of average treatment effects under unconfoundedness or exogenous treatment assignment is often hampered by lack of overlap in the covariate distributions. This lack of overlap can lead to imprecise estimates and can make commonly used estimators sensitive to the choice of...
Persistent link: https://www.econbiz.de/10003474186
Persistent link: https://www.econbiz.de/10003390459
A large part of the recent literature on program evaluation has focused on estimation of the average effect of the treatment under assumptions of unconfoundedness or ignorability following the seminal work by Rubin (1974) and Rosenbaum and Rubin (1983). In many cases however, researchers are...
Persistent link: https://www.econbiz.de/10003310963
Estimation of average treatment effects under unconfoundedness or exogenous treatment assignment is often hampered by lack of overlap in the covariate distributions. This lack of overlap can lead to imprecise estimates and can make commonly used estimators sensitive to the choice of...
Persistent link: https://www.econbiz.de/10012779277
A large part of the recent literature on program evaluation has focused on estimation of the average effect of the treatment under assumptions of unconfoundedness or ignorability following the seminal work by Rubin (1974) and Rosenbaum and Rubin (1983). In many cases however, researchers are...
Persistent link: https://www.econbiz.de/10012779845
A large part of the recent literature on program evaluation has focused on estimation of the average effect of the treatment under assumptions of unconfoundedness or ignorability following the seminal work by Rubin (1974) and Rosenbaum and Rubin (1983). In many cases however, researchers are...
Persistent link: https://www.econbiz.de/10012780268
Estimation of average treatment effects under unconfoundedness or exogenous treatment assignment is often hampered by lack of overlap in the covariate distributions. This lack of overlap can lead to imprecise estimates and can make commonly used estimators sensitive to the choice of...
Persistent link: https://www.econbiz.de/10013317404
In Regression Discontinuity (RD) designs for evaluating causal effects of interventions, assignment to a treatment is determined at least partly by the value of an observed covariate lying on either side of a fixed threshold. These designs were first introduced in the evaluation literature by...
Persistent link: https://www.econbiz.de/10010859057