Showing 1 - 10 of 101
Bivariate mixture models have been used to explain the stochastic behavior of daily price changes and trading volume on fmancial markets. In this class of models price changes and volume follow a mixture of bivariate distributions with the unobservable number of price relevant information...
Persistent link: https://www.econbiz.de/10010404267
This paper investigates the Information content of daily trading volume with respect to the long-run or high persistent and the short-run or transitory components of the volatility of daily stock market returns using bivariate mixture models. For this purpose, the Standard bivariate mixture...
Persistent link: https://www.econbiz.de/10010407096
In this paper we develop a dynamic model for integer counts to capture the dis- creteness of price changes for financial transaction prices. Our model rests on an autoregressive multinomial component for the direction of the price change and a dynamic count data component for the size of the...
Persistent link: https://www.econbiz.de/10002527884
In this paper Efficient Importance Sampling (EIS) is used to perform a classical and Bayesian analysis of univariate and multivariate Stochastic Volatility (SV) models for financial return series. EIS provides a highly generic and very accurate procedure for the Monte Carlo (MC) evaluation of...
Persistent link: https://www.econbiz.de/10002476893
This paper compares various models for time series of counts which can account for discreetness, overdispersion and serial correlation. Besides observation- and parameter-driven models based upon corresponding conditional Poisson distributions, we also consider a dynamic ordered probit model as...
Persistent link: https://www.econbiz.de/10002817440
We use panel probit models with unobserved heterogeneity and serially correlated errors in order to analyze the determinants and the dynamics of current-account reversals for a panel of developing and emerging countries. The likelihood evaluation of these models requires high-dimensional...
Persistent link: https://www.econbiz.de/10014050307
This paper develops a systematic Markov Chain Monte Carlo (MCMC) framework based upon Efficient Importance Sampling (EIS) which can be used for the analysis of a wide range of econometric models involving integrals without an analytical solution. EIS is a simple, generic and yet accurate...
Persistent link: https://www.econbiz.de/10014058202
We consider Particle Gibbs (PG) as a tool for Bayesian analysis of non-linear non-Gaussian state-space models. PG is a Monte Carlo (MC) approximation of the standard Gibbs procedure which uses sequential MC (SMC) importance sampling inside the Gibbs procedure to update the latent and potentially...
Persistent link: https://www.econbiz.de/10012970355
We propose a Conditional Autoregressive Wishart (CAW) model for the analysis of realized covariance matrices of asset returns. Our model assumes a generalized linear autoregressive moving average structure for the scale matrix of the Wishart distribution allowing to accommodate for complex...
Persistent link: https://www.econbiz.de/10013133422
This paper provides high-dimensional and flexible importance sampling procedures for the likelihood evaluation of dynamic latent variable models involving finite or infi nite mixtures leading to possibly heavy tailed and/or multi-modal target densities. Our approach is based upon the efficient...
Persistent link: https://www.econbiz.de/10013118069