Showing 1 - 10 of 17
Persistent link: https://www.econbiz.de/10005616034
We use a new weak dependence condition from Doukhan and Louhichi (Stoch. Process. Appl. 1999, 84, 313-342) to provide a central limit theorem for triangular arrays; this result applies for linear arrays (as in Peligrad and Utev, Ann. Probab. 1997, 25(1), 443-456) and standard kernel density...
Persistent link: https://www.econbiz.de/10005053147
Persistent link: https://www.econbiz.de/10009400193
Persistent link: https://www.econbiz.de/10009400199
We investigate the relationship between weak dependence and mixing for discrete valued processes. We show that weak dependence implies mixing conditions under natural assumptions. The results specialize to the case of Markov processes. Several examples of integer valued processes are discussed...
Persistent link: https://www.econbiz.de/10010593936
Persistent link: https://www.econbiz.de/10010575912
We consider generalized linear models for regression modeling of count time series. We give easily verifiable conditions for obtaining weak dependence for such models. These results enable the development of maximum likelihood inference under minimal conditions. Some examples which are useful to...
Persistent link: https://www.econbiz.de/10011039818
Persistent link: https://www.econbiz.de/10011039853
We prove the existence of a weakly dependent strictly stationary solution of the equation Xt=F(Xt-1,Xt-2,Xt-3,...;[xi]t) called a chain with infinite memory. Here the innovations [xi]t constitute an independent and identically distributed sequence of random variables. The function F takes values...
Persistent link: https://www.econbiz.de/10008873854
Nous considérons une chaîne de Markov homogène {Xn}. Nous estimons la densité de sa probabilité de transition à l'aide d'estimateurs à noyaux. Nous appliquons ces méthodes à l'estimation de la fonction f, supposée inconnue, du processus défini par X1 et Xn+1 = f(Xn)+[var epsilon]n où...
Persistent link: https://www.econbiz.de/10008874412