Showing 1 - 10 of 112
This paper focuses on single machine scheduling subject to inventory constraints. Jobs either add items to an inventory or remove items from that inventory. Jobs that have to remove items cannot be processed if the required number of items is not available. We consider scheduling problems on a...
Persistent link: https://www.econbiz.de/10008865209
Persistent link: https://www.econbiz.de/10011698219
Persistent link: https://www.econbiz.de/10003846469
Brucker et al. (Math Methods Oper Res 56: 407–412, 2003) have given an O(n 2 )-time algorithm for the problems $$P \mid p_{j}=1, r_{j}$$ , outtree $$\mid \sum C_{j}$$ and $$P \mid pmtn, p_{j}=1, r_{j}$$ , outtree $$\mid \sum C_{j}$$ . In this note, we show that their algorithm admits an O(n...
Persistent link: https://www.econbiz.de/10010759597
Brucker et al. (Math Methods Oper Res 56: 407–412, 2003) have given an O(n <Superscript>2</Superscript>)-time algorithm for the problems <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$P \mid p_{j}=1, r_{j}$$</EquationSource> </InlineEquation>, outtree <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$\mid \sum C_{j}$$</EquationSource> </InlineEquation> and <InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$P \mid pmtn, p_{j}=1, r_{j}$$</EquationSource> </InlineEquation>, outtree <InlineEquation ID="IEq4"> <EquationSource Format="TEX">$$\mid \sum C_{j}$$</EquationSource> </InlineEquation>. In this note, we show that their algorithm admits an...</equationsource></inlineequation></equationsource></inlineequation></equationsource></inlineequation></equationsource></inlineequation></superscript>
Persistent link: https://www.econbiz.de/10011000009
Persistent link: https://www.econbiz.de/10011477444
Persistent link: https://www.econbiz.de/10011491967
Persistent link: https://www.econbiz.de/10011421399
Persistent link: https://www.econbiz.de/10011947979
Persistent link: https://www.econbiz.de/10011698643