Showing 1 - 10 of 13
Let be the space of real cadlag functions on with finite limits at ±[infinity], equipped with uniform distance, and let Xn be the empirical process for an exchangeable sequence of random variables. If regarded as a random element of , Xn can fail to converge in distribution. However, in this...
Persistent link: https://www.econbiz.de/10008874727
Let <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$L$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi>L</mi> </math> </EquationSource> </InlineEquation> be a linear space of real random variables on the measurable space <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$(\varOmega ,\mathcal {A})$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="italic">Ω</mi> <mo>,</mo> <mi mathvariant="script">A</mi> <mo stretchy="false">)</mo> </mrow> </math> </EquationSource> </InlineEquation>. Conditions for the existence of a probability <InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$P$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi>P</mi> </math> </EquationSource> </InlineEquation> on <InlineEquation ID="IEq4"> <EquationSource Format="TEX">$$\mathcal {A}$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi mathvariant="script">A</mi> </math> </EquationSource> </InlineEquation> such that <InlineEquation ID="IEq5"> <EquationSource Format="TEX">$$E_P|X|\infty $$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <msub> <mi>E</mi> <mi>P</mi> </msub> <mrow> <mo stretchy="false">|</mo> <mi>X</mi> <mo stretchy="false">|</mo> </mrow> <mo></mo> <mi>∞</mi> </mrow> </math> </EquationSource> </InlineEquation> and <InlineEquation ID="IEq6"> <EquationSource Format="TEX">$$E_P(X)=0$$</EquationSource> <EquationSource Format="MATHML">...</equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10011151903
An urn contains balls of d=2 colors. At each time n=1, a ball is drawn and then replaced together with a random number of balls of the same color. Let diag (An,1,...,An,d) be the n-th reinforce matrix. Assuming that EAn,j=EAn,1 for all n and j, a few central limit theorems (CLTs) are available...
Persistent link: https://www.econbiz.de/10008872647
In various frameworks, to assess the joint distribution of a k-dimensional random vector X=(X1,…,Xk), one selects some putative conditional distributions Q1,…,Qk. Each Qi is regarded as a possible (or putative) conditional distribution for Xi given (X1,…,Xi−1,Xi+1,…,Xk). The Qi are...
Persistent link: https://www.econbiz.de/10011041946
Persistent link: https://www.econbiz.de/10005613357
For an exchangeable sequence of random variables, almost surely, the difference between the empirical and the predictive distribution functions converges to zero uniformly.
Persistent link: https://www.econbiz.de/10005313944
Let be a filtration, {Xn} an adapted sequence of real random variables, and {[alpha]n} a predictable sequence of non-negative random variables with [alpha]10. Set and define the random distribution functions and . Under mild assumptions on {[alpha]n}, it is shown that , a.s. on the set {Fn or Bn...
Persistent link: https://www.econbiz.de/10005319637
Persistent link: https://www.econbiz.de/10012285382
Persistent link: https://www.econbiz.de/10010998681
In this paper we prove, first of all, two inequalities for conditional expectations, from which we easily deduce a result by Landers and Rogge. Then we prove convergence results for conditional expectations of the form Pn[f(Xn)Yn] to a conditional expectation of the form P[f(X)Y]. We study, in...
Persistent link: https://www.econbiz.de/10005259128