Showing 1 - 10 of 2,221
This paper discusses pooling versus model selection for now- and forecasting in the presence of model uncertainty with large, unbalanced datasets. Empirically, unbalanced data is pervasive in economics and typically due to different sampling frequencies and publication delays. Two model classes...
Persistent link: https://www.econbiz.de/10005123534
We analyze the complete subset regression (CSR) approach of Elliott et al. (2013) in situations with many possible predictor variables. The CSR approach has the computational advantage that it can be applied even when the number of predictors exceeds the sample size. Theoretical results...
Persistent link: https://www.econbiz.de/10011264276
Time series models are often adopted for forecasting because of their simplicity and good performance. The number of parameters in these models increases quickly with the number of variables modelled, so that usually only univariate or small-scale multivariate models are considered. Yet, data...
Persistent link: https://www.econbiz.de/10005661430
This paper explores the usefulness of bagging methods in forecasting economic time series from linear multiple regression models. We focus on the widely studied question of whether the inclusion of indicators of real economic activity lowers the prediction mean-squared error of forecast models...
Persistent link: https://www.econbiz.de/10005661494
In this paper, we evaluate the role of using consumer price index (CPI) disaggregated data to improve the accuracy of inflation forecasts. Our forecasting approach is based on extracting the factors from the subcomponents of the CPI at the highest degree of disaggregation. The data set contains...
Persistent link: https://www.econbiz.de/10010573296
Long-run forecasts of economic variables play an important role in policy, planning, and portfolio decisions. We consider long-horizon forecasts of average growth of a scalar variable, assuming that first differences are second-order stationary. The main contribution is the construction of...
Persistent link: https://www.econbiz.de/10010796670
Forecast evaluation often compares a parsimonious null model to a larger model that nests the null model. Under the null that the parsimonious model generates the data, the larger model introduces noise into its forecasts by estimating parameters whose population values are zero. We observe that...
Persistent link: https://www.econbiz.de/10005832264
Persistent link: https://www.econbiz.de/10012115340
It is rather common to have several competing forecasts for the same variable, and many methods have been suggested to pick up the best, on the basis of their past forecasting performance. As an alternative, the forecasts can be combined to obtain a pooled forecast, and several options are...
Persistent link: https://www.econbiz.de/10005504619
The answer depends on the objective. The approach of combining five of the leading forecasting models with equal weights dominates the strategy of selecting one model and using it for all horizons up to two years. Even more accurate forecasts, however, are obtained when allowing the forecast...
Persistent link: https://www.econbiz.de/10011083466