Showing 1 - 9 of 9
Persistent link: https://www.econbiz.de/10015327779
Stuetzle and Mittal (1979) for ordinary nonparametric kernel regression and Kauermann and Tutz (1996) for nonparametric generalized linear model kernel regression constructed estimators with lower order bias than the usual estimators, without the need for devices such as second derivative...
Persistent link: https://www.econbiz.de/10005254874
Persistent link: https://www.econbiz.de/10005390530
Persistent link: https://www.econbiz.de/10011036582
We consider a generalized mixture of nonlinear AR models, a hidden Markov model for which the autoregressive functions are single layer feedforward neural networks. The nontrivial problem of identifiability, which is usually postulated for hidden Markov models, is addressed here.
Persistent link: https://www.econbiz.de/10005223228
We consider the problem of estimating the conditional quantile of a time series <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$\{ Y_t\}$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mo stretchy="false">{</mo> <msub> <mi>Y</mi> <mi>t</mi> </msub> <mo stretchy="false">}</mo> </mrow> </math> </EquationSource> </InlineEquation> at time <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$t$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi>t</mi> </math> </EquationSource> </InlineEquation> given covariates <InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$\varvec{X}_{t}$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msub> <mrow> <mi mathvariant="bold-italic">X</mi> </mrow> <mi>t</mi> </msub> </math> </EquationSource> </InlineEquation>, where <InlineEquation ID="IEq4"> <EquationSource Format="TEX">$$\varvec{X}_{t}$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msub> <mrow> <mi mathvariant="bold-italic">X</mi> </mrow> <mi>t</mi> </msub> </math> </EquationSource> </InlineEquation> can be either exogenous variables or lagged variables of <InlineEquation ID="IEq5"> <EquationSource Format="TEX">$${ Y_t}$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msub> <mi>Y</mi>...</msub></math></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10011151945
Persistent link: https://www.econbiz.de/10010485660
Persistent link: https://www.econbiz.de/10012000638
Die beliebte und erfolgreiche Einführung in die Volkswirtschaftslehre für Wirtschaftsstudenten im Grundstudium. Aus dem Inhalt: Ökonomische Grundprobleme jeder Gesellschaft. Funktionsweise von Wirtschaftssystemen. Einige Elemente der Wirtschaftsordnung der Bundesrepublik Deutschland. Aus der...
Persistent link: https://www.econbiz.de/10014508159