Showing 1 - 10 of 47
This paper studies the ICAPM intertemporal relation between the conditional mean and the conditional variance of the aggregate stock market return. We introduce a new estimator that forecasts monthly variance with past daily squared returns -- the Mixed Data Sampling (or MIDAS) approach. Using...
Persistent link: https://www.econbiz.de/10004976947
We consider various MIDAS (Mixed Data Sampling) regression models to predict volatility. The models differ in the specification of regressors (squared returns, absolute returns, realized volatility, realized power, and return ranges), in the use of daily or intra-daily (5-minute) data, and in...
Persistent link: https://www.econbiz.de/10005580147
We propose a novel approach to optimizing portfolios with large numbers of assets. We model directly the portfolio weight in each asset as a function of the asset's characteristics. The coefficients of this function are found by optimizing the investor's average utility of the portfolio's return...
Persistent link: https://www.econbiz.de/10005778071
We propose a novel approach to optimizing portfolios with large numbers of assets. We model directly the portfolio weight in each asset as a function of the asset's characteristics. The coefficients of this function are found by optimizing the investor's average utility of the portfolio's return...
Persistent link: https://www.econbiz.de/10008546187
Persistent link: https://www.econbiz.de/10005192571
Persistent link: https://www.econbiz.de/10005362744
We explore mixed data sampling (henceforth MIDAS) regression models. The regressions involve time series data sampled at different frequencies. Volatility and related processes are our prime focus, though the regression method has wider applications in macroeconomics and finance, among other...
Persistent link: https://www.econbiz.de/10005476038
Persistent link: https://www.econbiz.de/10005478111
Persistent link: https://www.econbiz.de/10005376611
We propose a new approach to predictive density modeling that allows for MIDAS effects in both the first and second moments of the outcome and develop Gibbs sampling methods for Bayesian estimation in the presence of stochastic volatility dynamics. When applied to quarterly U.S. GDP growth data,...
Persistent link: https://www.econbiz.de/10011083475