Showing 1 - 4 of 4
We theoretically characterize the behavior of machine learning asset pricing models. We prove that expected out-of-sample model performance--in terms of SDF Sharpe ratio and test asset pricing errors--is improving in model parameterization (or "complexity"). Our empirical findings verify the...
Persistent link: https://www.econbiz.de/10014372446
We theoretically characterize the behavior of machine learning asset pricing models. We prove that expected out-of-sample model performance---in terms of SDF Sharpe ratio and test asset pricing errors---is improving in model parameterization (or "complexity''). Our empirical findings verify the...
Persistent link: https://www.econbiz.de/10014472608
We introduce artificial intelligence pricing theory (AIPT). In contrast with the APT's foundational assumption of a low dimensional factor structure in returns, the AIPT conjectures that returns are driven by a large number of factors. We first verify this conjecture empirically and show that...
Persistent link: https://www.econbiz.de/10015072953
Persistent link: https://www.econbiz.de/10013174976