Showing 1 - 10 of 886
DSGE models are a prominent tool for forecasting at central banks and the competitive forecasting performance of these models relative to alternatives--including official forecasts--has been documented. When evaluating DSGE models on an absolute basis, however, we find that the benchmark...
Persistent link: https://www.econbiz.de/10008784742
The ability of popular statistical methods, the Federal Reserve Greenbook and the Survey of Professional Forecasters to improve upon the forecasts of inflation and real activity from naive models has declined significantly during the most recent period of greater macroeconomic stability. The...
Persistent link: https://www.econbiz.de/10005067416
Historical time-series data is short relative to the frequency of political and economic crises. This makes it difficult to use pure time-series methods to identify the impacts of safe haven demand on asset prices, in the face of confounding effects from a wide range of alternative drivers. We...
Persistent link: https://www.econbiz.de/10011084288
It is standard in applied work to select forecasting models by ranking candidate models by their prediction mean squared error (PMSE) in simulated out-of-sample (SOOS) forecasts. Alternatively, forecast models may be selected using information criteria (IC). We compare the asymptotic and...
Persistent link: https://www.econbiz.de/10005504404
Recently, it has been suggested that macroeconomic forecasts from estimated DSGE models tend to be more accurate out-of-sample than random walk forecasts or Bayesian VAR forecasts. Del Negro and Schorfheide(2013) in particular suggest that the DSGE model forecast should become the benchmark for...
Persistent link: https://www.econbiz.de/10011083411
While forecasting is a common practice in academia, government and business alike, practitioners are often left wondering how to choose the sample for estimating forecasting models. When we forecast inflation in 2014, for example, should we use the last 30 years of data or the last 10 years of...
Persistent link: https://www.econbiz.de/10011083425
Time series models are often adopted for forecasting because of their simplicity and good performance. The number of parameters in these models increases quickly with the number of variables modelled, so that usually only univariate or small-scale multivariate models are considered. Yet, data...
Persistent link: https://www.econbiz.de/10005661430
This paper explores the usefulness of bagging methods in forecasting economic time series from linear multiple regression models. We focus on the widely studied question of whether the inclusion of indicators of real economic activity lowers the prediction mean-squared error of forecast models...
Persistent link: https://www.econbiz.de/10005661494
Evaluation of forecast optimality in economics and finance has almost exclusively been conducted under the assumption of mean squared error loss. Under this loss function optimal forecasts should be unbiased and forecast errors serially uncorrelated at the single-period horizon with increasing...
Persistent link: https://www.econbiz.de/10005661998
Inflation is a far from homogeneous phenomenon, a fact often neglected in modelling consumer price inflation. This study, the first of its kind for an emerging market country, investigates gains to inflation forecast accuracy by aggregating weighted forecasts of the sub-component price indices,...
Persistent link: https://www.econbiz.de/10008553067