Showing 1 - 10 of 30
Several Bayesian model combination schemes, including some novel approaches that simultaneously allow for parameter uncertainty, model uncertainty and robust time varying model weights, are compared in terms of forecast accuracy and economic gains using ¯nancial and macroeconomic time series....
Persistent link: https://www.econbiz.de/10004985513
We introduce a Combined Density Nowcasting (CDN) approach to Dynamic Factor Models (DFM) that in a coherent way accounts for time-varying uncertainty of several model and data features in order to provide more accurate and complete density nowcasts. The combination weights are latent random...
Persistent link: https://www.econbiz.de/10011124200
Interactions between the eurozone and US booms and busts and among major eurozone economies are analyzed by introducing a panel Markov-switching VAR model well suitable for a multi-country cyclical analysis. The model accommodates changes in low and high data frequencies and endogenous...
Persistent link: https://www.econbiz.de/10010787759
We propose new forecast combination schemes for predicting turning points of business cycles. The combination schemes deal with the forecasting performance of a given set of models and possibly providing better turning point predictions. We consider turning point predictions generated by...
Persistent link: https://www.econbiz.de/10010835414
Using a Bayesian framework this paper provides a multivariate combination approach to prediction based on a distributional state space representation of predictive densities from alternative models. In the proposed approach the model set can be incomplete. Several multivariate time-varying...
Persistent link: https://www.econbiz.de/10008773901
This paper examines the predictive power of weather for electricity prices in day-ahead markets in real time. We find that next-day weather forecasts improve the forecast accuracy of day-ahead electricity prices substantially, suggesting that weather forecasts can price the weather premium....
Persistent link: https://www.econbiz.de/10005481438
We argue that the next generation of macro modellers at Inflation Targeting central banks should adapt a methodology from the weather forecasting literature known as `ensemble modelling'. In this approach, uncertainty about model specifications (e.g., initial conditions, parameters, and boundary...
Persistent link: https://www.econbiz.de/10004976646
We propose a novel Bayesian model combination approach where the combination weights depend on the past forecasting performance of the individual models entering the combination through a utility-based objective function. We use this approach in the context of stock return predictability and...
Persistent link: https://www.econbiz.de/10011162487
A long strand of literature has shown that the world has become more global. Yet, the recent Great Global Recession turned out to be hard to predict, with forecasters across the world committing large forecast errors. We examine whether knowledge of in-sample co-movement across countries could...
Persistent link: https://www.econbiz.de/10011208180
We introduce a Bayesian approach to predictive density calibration and combination that accounts for parameter uncertainty and model set incompleteness through the use of random calibration functionals and random combination weights. Building on the work of Ranjan and Gneiting (2010) and...
Persistent link: https://www.econbiz.de/10011189239