Showing 1 - 10 of 87
We propose a new model for dynamic volatilities and correlations of skewed and heavy-tailed data. Our model endows the Generalized Hyperbolic distribution with time-varying parameters driven by the score of the observation density function. The key novelty in our approach is the fact that the...
Persistent link: https://www.econbiz.de/10011257612
This paper has been accepted for publication in the 'Review of Economics and Statistics'.We propose a dynamic factor model for mixed-measurement and mixed-frequency panel data. In this framework time series observations may come from a range of families of parametric distributions, may be...
Persistent link: https://www.econbiz.de/10011257450
We develop a new parameter stability test against the alternative of observation driven generalized autoregressive score dynamics. The new test generalizes the ARCH-LM test of Engle (1982) to settings beyond time-varying volatility and exploits any autocorrelation in the likelihood scores under...
Persistent link: https://www.econbiz.de/10011255854
We propose a novel empirical framework to assess the likelihood of joint and conditional failure for Euro area sovereigns. Our model is based on a dynamic skewed-t copulawhich captures all the salient features of the data, including skewed and heavy-tailed changes in the price of CDS protection...
Persistent link: https://www.econbiz.de/10011256560
We develop a novel high-dimensional non-Gaussian modeling framework to infer conditional and joint risk measures for many financial sector firms. The model is based on a dynamic Generalized Hyperbolic Skewed-t block-equicorrelation copula with time-varying volatility and dependence parameters...
Persistent link: https://www.econbiz.de/10011255874
This discussion paper led to a publication in <A href="http://www.tandfonline.com/doi/abs/10.1198/jbes.2011.10070">'Journal of Business & Economic Statistics'</A>, 29(4), 552-63.<P>We propose a new class of observation-driven time-varying parameter models for dynamic volatilities and correlations to handle time series from heavy-tailed distributions. The model adopts...</p></a>
Persistent link: https://www.econbiz.de/10011257658
We propose a new class of observation driven time series models referred to as Generalized Autoregressive Score (GAS) models. The driving mechanism of the GAS model is the scaled score of the likelihood function. This approach provides a unified and consistent framework for introducing...
Persistent link: https://www.econbiz.de/10011255643
In this paper we investigate whether the dynamic properties of the U.S. business cycle have changed in the last fifty years. For this purpose we develop a flexible business cycle indicator that is constructed from a moderate set of macroeconomic time series. The coincident economic indicator is...
Persistent link: https://www.econbiz.de/10011255922
We propose a new Markov switching model with time varying probabilities for the transitions. The novelty of our model is that the transition probabilities evolve over time by means of an observation driven model. The innovation of the time varying probability is generated by the score of the...
Persistent link: https://www.econbiz.de/10011256525
Accepted for an article forthcoming in the <I>Review of Economics and Statics</I>. Volume 97, 2015.<P> We study whether and when parameter-driven time-varying parameter models lead to forecasting gains over observation-driven models. We consider dynamic count, intensity, duration, volatility and copula...</p></i>
Persistent link: https://www.econbiz.de/10011256798