Showing 1 - 3 of 3
In regression with a vector of quantitative predictors, sufficient dimension reduction methods can effectively reduce the predictor dimension, while preserving full regression information and assuming no parametric model. However, all current reduction methods require the sample size n to be...
Persistent link: https://www.econbiz.de/10005743425
The penalized least squares approach with smoothly clipped absolute deviation penalty has been consistently demonstrated to be an attractive regression shrinkage and selection method. It not only automatically and consistently selects the important variables, but also produces estimators which...
Persistent link: https://www.econbiz.de/10005743489
We employ Lasso shrinkage within the context of sufficient dimension reduction to obtain a shrinkage sliced inverse regression estimator, which provides easier interpretations and better prediction accuracy without assuming a parametric model. The shrinkage sliced inverse regression approach can...
Persistent link: https://www.econbiz.de/10005559313