Showing 1 - 10 of 17
There has been substantial recent interest in non- and semiparametric methods for longitudinal or clustered data with dependence within clusters. It has been shown rather inexplicably that, when standard kernel smoothing methods are used in a natural way, higher efficiency is obtained by...
Persistent link: https://www.econbiz.de/10005743499
We study the heteroscedastic partially linear model with an unspecified partial baseline component and a nonparametric variance function. An interesting finding is that the performance of a naive weighted version of the existing estimator could deteriorate when the smooth baseline component is...
Persistent link: https://www.econbiz.de/10005743506
We study nonparametric regression for correlated failure time data. Kernel estimating equations are used to estimate nonparametric covariate effects. Independent and weighted-kernel estimating equations are studied. The derivative of the nonparametric function is first estimated and the...
Persistent link: https://www.econbiz.de/10005559306
The objective of this paper is to quantify the effect of correlation in false discovery rate analysis. Specifically, we derive approximations for the mean, variance, distribution and quantiles of the standard false discovery rate estimator for arbitrarily correlated data. This is achieved using...
Persistent link: https://www.econbiz.de/10009148396
In the analysis of bivariate correlated failure time data, it is important to measure the strength of association among the correlated failure times. One commonly used measure is the cross ratio. Motivated by Cox's partial likelihood idea, we propose a novel parametric cross ratio estimator that...
Persistent link: https://www.econbiz.de/10009148402
We consider a class of semiparametric normal transformation models for right-censored bivariate failure times. Nonparametric hazard rate models are transformed to a standard normal model and a joint normal distribution is assumed for the bivariate vector of transformed variates. A semiparametric...
Persistent link: https://www.econbiz.de/10005569426
For independent data, it is well known that kernel methods and spline methods are essentially asymptotically equivalent (Silverman, 1984). However, recent work of Welsh et al. (2002) shows that the same is not true for clustered/longitudinal data. Splines and conventional kernels are different...
Persistent link: https://www.econbiz.de/10005569476
We develop an easily computed smooth backfitting algorithm for additive model fitting in repeated measures problems. Our methodology easily copes with various settings, such as when some covariates are the same over repeated response measurements. We allow for a working covariance matrix for the...
Persistent link: https://www.econbiz.de/10005018154
We investigate the effects of measurement error on the estimation of nonparametric variance functions. We show that either ignoring measurement error or direct application of the simulation extrapolation, SIMEX, method leads to inconsistent estimators. Nevertheless, the direct SIMEX method can...
Persistent link: https://www.econbiz.de/10005559303
Hjort & Claeskens (2003) developed an asymptotic theory for model selection, model averaging and subsequent inference using likelihood methods in parametric models, along with associated confidence statements. In this article, we consider a semiparametric version of this problem, wherein the...
Persistent link: https://www.econbiz.de/10005559351