Showing 1 - 10 of 465
Persistent link: https://www.econbiz.de/10002889750
In this paper, we propose a general method for testing inequality restrictions on nonparametric functions. Our framework includes many nonparametric testing problems in a uni ed framework, with a number of possible applications in auction models, game theoretic models, wage inequality, and...
Persistent link: https://www.econbiz.de/10010254852
This paper introduces a new hypothesis test for the null hypothesis H0 : f(Ø) = Y0, where f(.) is a known function, Y0 is a known constant, and Ø is a parameter that is partially identified by a moment (in)equality model. The main application of our test is sub-vector inference in moment...
Persistent link: https://www.econbiz.de/10010234017
This paper considers inference in logistic regression models with high dimensional data. We propose new methods for estimating and constructing confidence regions for a regression parameter of primary interest α0, a parameter in front of the regressor of interest, such as the treatment variable...
Persistent link: https://www.econbiz.de/10010226493
We develop uniformly valid confidence regions for regression coefficients in a high-dimensional sparse least absolute deviation/median regression model. The setting is one where the number of regressors p could be large in comparison to the sample size n, but only s << n of them are needed to accurately describe the regression function. Our new methods are based on the instrumental median regression estimator that assembles the optimal estimating equation from the output of the post l1-penalized median regression and post l1-penalized least squares in an auxiliary equation. The estimating equation is immunized against non-regular estimation of nuisance part of the median regression function, in the sense of Neyman. We establish that in a homoscedastic regression model, the instrumental median regression estimator of a single regression coefficient is asymptotically root-n normal uniformly with respect to the underlying sparse model. The resulting confidence regions are valid uniformly with respect to the underlying model. We illustrate the value of uniformity with Monte-Carlo experiments which demonstrate that standard/naive post-selection inference breaks down over large parts of the parameter space, and the proposed method does not. We then generalize our method to the case where p1 > n regression coefficients...</<>
Persistent link: https://www.econbiz.de/10010227487
This paper develops a specification test for the instrument validity conditions in the heterogeneous treatment effect model with a binary treatment and a discrete instrument. A necessary testable implication for the joint restriction of instrument exogeneity and instrument monotonicity is given...
Persistent link: https://www.econbiz.de/10010190476
We study the problem of nonparametric regression when the regressor is endogenous, which is an important nonparametric instrumental variables (NPIV) regression in econometrics and a difficult ill-posed inverse problem with unknown operator in statistics. We first establish a general upper bound...
Persistent link: https://www.econbiz.de/10010197046
We develop uniformly valid confidence regions for a regression coefficient in a high-dimensional sparse LAD (least absolute deviation or median) regression model. The setting is one where the number of regressors p could be large in comparison to the sample size n, but only s n of them are...
Persistent link: https://www.econbiz.de/10009747946
This paper studies the problem of specification testing in partially identified models defined by a finite number of moment equalities and inequalities (i.e., (in)equalities). Under the null hypothesis, there is at least one parameter value that simultaneously satisfies all of the moment...
Persistent link: https://www.econbiz.de/10009692018
Monotonicity is a key qualitative prediction of a wide array of economic models derived via robust comparative statics. It is therefore important to design effective and practical econometric methods for testing this prediction in empirical analysis. This paper develops a general nonparametric...
Persistent link: https://www.econbiz.de/10009667989