Showing 1 - 10 of 131
This article is about estimation and inference methods for high dimensional sparse (HDS) regression models in econometrics. High dimensional sparse models arise in situations where many regressors (or series terms) are available and the regression function is well-approximated by a parsimonious,...
Persistent link: https://www.econbiz.de/10009419335
We propose methods for inference on the average effect of a treatment on a scalar outcome in the presence of very many controls. Our setting is a partially linear regression model containing the treatment/policy variable and a large number p of controls or series terms, with p that is possibly...
Persistent link: https://www.econbiz.de/10009419338
Persistent link: https://www.econbiz.de/10003481737
We consider median regression and, more generally, quantile regression in high-dimensional sparse models. In these models the overall number of regressors p is very large, possibly larger than the sample size n, but only s of these regressors have non-zero impact on the conditional quantile of...
Persistent link: https://www.econbiz.de/10003838974
In this paper we study post-penalized estimators which apply ordinary, unpenalized linear regression to the model selected by first-step penalized estimators, typically LASSO. It is well known that LASSO can estimate the regression function at nearly the oracle rate, and is thus hard to improve...
Persistent link: https://www.econbiz.de/10003989968
High-dimensional linear models with endogenous variables play an increasingly important role in recent econometric literature. In this work we allow for models with many endogenous variables and many instrument variables to achieve identification. Because of the high-dimensionality in the second...
Persistent link: https://www.econbiz.de/10011775296
The understanding of co-movements, dependence, and influence between variables of interest is key in many applications. Broadly speaking such understanding can lead to better predictions and decision making in many settings. We propose Quantile Graphical Models (QGMs) to characterize prediction...
Persistent link: https://www.econbiz.de/10011775380
This chapter presents key concepts and theoretical results for analyzing estimation and inference in high-dimensional models. High-dimensional models are characterized by having a number of unknown parameters that is not vanishingly small relative to the sample size. We first present results in...
Persistent link: https://www.econbiz.de/10011865610
This paper considers inference for a function of a parameter vector in a partially identified model with many moment inequalities. This framework allows the number of moment conditions to grow with the sample size, possibly at exponential rates. Our main motivating application is subvector...
Persistent link: https://www.econbiz.de/10012013995
We study high-dimensional linear models with error-in-variables. Such models are motivated by various applications in econometrics, finance and genetics. These models are challenging because of the need to account for measurement errors to avoid non-vanishing biases in addition to handle the...
Persistent link: https://www.econbiz.de/10011646395