Showing 1 - 10 of 67
In this work we consider series estimators for the conditional mean in light of three new ingredients: (i) sharp LLNs for matrices derived from the non-commutative Khinchin inequalities, (ii) bounds on the Lebesgue factor that controls the ratio between the L8 and L2-norms, and (iii) maximal...
Persistent link: https://www.econbiz.de/10010227484
In this paper, we study a nonparametric regression model including a periodic component, a smooth trend function, and a stochastic error term. We propose a procedure to estimate the unknown period and the function values of the periodic component as well as the nonparametric trend function. The...
Persistent link: https://www.econbiz.de/10009614392
We establish the consistency and asymptotic normality for a class of estimators that are linear combinations of a set of √n– consistent estimators whose cardinality increases with sample size. A special case of our framework corresponds to the conditional moment restriction and the implied...
Persistent link: https://www.econbiz.de/10009620338
We give semiparametric identification and estimation results for econometric models with a regressor that is endogenous, bound censored and selected, called a Tobin regressor. First, we show that true parameter value is set identified and characterize the identification sets. Second, we propose...
Persistent link: https://www.econbiz.de/10003838979
Persistent link: https://www.econbiz.de/10003264017
Persistent link: https://www.econbiz.de/10003375924
Persistent link: https://www.econbiz.de/10003603962
We propose simultaneous mean-variance regression for the linear estimation and approximation of conditional mean functions. In the presence of heteroskedasticity of unknown form, our method accounts for varying dispersion in the regression outcome across the support of conditioning variables by...
Persistent link: https://www.econbiz.de/10011815426
We develop a framework for difference-in-differences designs with staggered treatment adoption and heterogeneous causal effects. We show that conventional regression-based estimators fail to provide unbiased estimates of relevant estimands absent strong restrictions on treatment-effect...
Persistent link: https://www.econbiz.de/10013186725
A popular approach to perform inference on a target parameter in the presence of nuisance parameters is to construct estimating equations that are orthogonal to the nuisance parameters, in the sense that their expected first derivative is zero. Such first-order orthogonalization may, however,...
Persistent link: https://www.econbiz.de/10015191457