Showing 1 - 10 of 461
Parametric mixture models are commonly used in applied work, especially empiri- cal economics, where these models are often employed to learn for example about the proportions of various types in a given population. This paper examines the inference question on the proportions (mixing...
Persistent link: https://www.econbiz.de/10009742927
The aim of this paper is to provide simple nonparametric methods to estimate finitemixture models from data with repeated measurements. Three measurements suffice for the mixture to be fully identified and so our approach can be used even with very short panel data. We provide distribution...
Persistent link: https://www.econbiz.de/10010254835
Goodness of fit tests based on sup-norm statistics of empirical processes have nonstandard limiting distributions when the null hypothesis is composite-that is, when parameters of the null model are estimated. Several solutions to this problem have been suggested, including the calculation of...
Persistent link: https://www.econbiz.de/10008697470
In this paper, we propose three new predictive models: the multi-step nonparametric predictive regression model and the multi-step additive predictive regression model, in which the predictive variables are locally stationary time series; and the multi-step time-varying coefficient predictive...
Persistent link: https://www.econbiz.de/10011775136
The (quasi-) maximum likelihood estimator (MLE) for the autoregressive parameter in a spatial autoregressive model cannot in general be written explicitly in terms of the data. The only known properties of the estimator have hitherto been its first-order asymptotic properties (Lee, 2004,...
Persistent link: https://www.econbiz.de/10010126876
A popular approach to perform inference on a target parameter in the presence of nuisance parameters is to construct estimating equations that are orthogonal to the nuisance parameters, in the sense that their expected first derivative is zero. Such first-order orthogonalization may, however,...
Persistent link: https://www.econbiz.de/10015191457
We consider cross-sectional data that exhibit no spatial correlation, but are feared to be spatially dependent. We demonstrate that a spatial version of the stochastic volatility model of financial econometrics, entailing a form of spatial autoregression, can explain such behaviour. The...
Persistent link: https://www.econbiz.de/10003765993
Efron's elegant approach to g-modeling for empirical Bayes problems is contrasted with an implementation of the Kiefer-Wolfowitz nonparametric maximum likelihood estimator for mixture models for several examples. The latter approach has the advantage that it is free of tuning parameters and...
Persistent link: https://www.econbiz.de/10011991882
We study the asymptotic properties of a class of estimators of the structural parameters in dynamic discrete choice games. We consider K-stage policy iteration (PI) estimators, where K denotes the number of policy iterations employed in the estimation. This class nests several estimators...
Persistent link: https://www.econbiz.de/10011797607
The multinomial logit model with random coefficients is widely used in applied research. This paper is concerned with estimating a random coefficients logit model in which the distribution of each coefficient is characterized by finitely many parameters. Some of these parameters may be zero. The...
Persistent link: https://www.econbiz.de/10012109830