Showing 1 - 10 of 477
High-dimensional covariates often admit linear factor structure. To effectively screen correlated covariates in high-dimension, we propose a conditional variable screening test based on non-parametric regression using neural networks due to their representation power. We ask the question whether...
Persistent link: https://www.econbiz.de/10015053806
Persistent link: https://www.econbiz.de/10002528193
Persistent link: https://www.econbiz.de/10002144571
Slope coefficients in rank-rank regressions are popular measures of intergenerational mobility, for instance in regressions of a child's income rank on their parent's income rank. In this paper, we first point out that commonly used variance estimators such as the homoskedastic or robust...
Persistent link: https://www.econbiz.de/10014416045
We introduce a notion of median uncorrelation that is a natural extension of mean (linear) uncorrelation. A scalar random variable Y is median uncorrelated with a k-dimensional random vector X if and only if the slope from an LAD regression of Y on X is zero. Using this simple definition, we...
Persistent link: https://www.econbiz.de/10008660608
This paper is concerned with testing rationality restrictions using quantile regression methods. Specifically, we consider negative semidefiniteness of the Slutsky matrix, arguably the core restriction implied by utility maximization. We consider a heterogeneous population characterized by a...
Persistent link: https://www.econbiz.de/10009008722
This paper is concerned with the nonparametric estimation of regression quantiles where the response variable is randomly censored. Using results on the strong uniform convergence of U-processes, we derive a global Bahadur representation for the weighted local polynomial estimators, which is...
Persistent link: https://www.econbiz.de/10009375692
In this paper, we propose a general method for testing inequality restrictions on nonparametric functions. Our framework includes many nonparametric testing problems in a uni ed framework, with a number of possible applications in auction models, game theoretic models, wage inequality, and...
Persistent link: https://www.econbiz.de/10010254852
This paper considers inference in logistic regression models with high dimensional data. We propose new methods for estimating and constructing confidence regions for a regression parameter of primary interest α0, a parameter in front of the regressor of interest, such as the treatment variable...
Persistent link: https://www.econbiz.de/10010226493
We develop uniformly valid confidence regions for regression coefficients in a high-dimensional sparse least absolute deviation/median regression model. The setting is one where the number of regressors p could be large in comparison to the sample size n, but only s << n of them are needed to accurately describe the regression function. Our new methods are based on the instrumental median regression estimator that assembles the optimal estimating equation from the output of the post l1-penalized median regression and post l1-penalized least squares in an auxiliary equation. The estimating equation is immunized against non-regular estimation of nuisance part of the median regression function, in the sense of Neyman. We establish that in a homoscedastic regression model, the instrumental median regression estimator of a single regression coefficient is asymptotically root-n normal uniformly with respect to the underlying sparse model. The resulting confidence regions are valid uniformly with respect to the underlying model. We illustrate the value of uniformity with Monte-Carlo experiments which demonstrate that standard/naive post-selection inference breaks down over large parts of the parameter space, and the proposed method does not. We then generalize our method to the case where p1 > n regression coefficients...</<>
Persistent link: https://www.econbiz.de/10010227487