Showing 1 - 10 of 231
A two-step generalized method of moments estimation procedure can be made robust to heteroskedasticity and autocorrelation in the data by using a nonparametric estimator of the optimal weighting matrix. This paper addresses the issue of choosing the corresponding smoothing parameter (or...
Persistent link: https://www.econbiz.de/10010336485
We consider the estimation and inference in a system of high-dimensional regression equations allowing for temporal and cross-sectional dependency in covariates and error processes, covering rather general forms of weak dependence. A sequence of large-scale regressions with LASSO is applied to...
Persistent link: https://www.econbiz.de/10011865621
We consider the estimation and inference in a system of high-dimensional regression equations allowing for temporal and cross-sectional dependency in covariates and error processes, covering rather general forms of weak dependence. A sequence of regressions with many regressors using LASSO...
Persistent link: https://www.econbiz.de/10012003693
Goodness of fit tests based on sup-norm statistics of empirical processes have nonstandard limiting distributions when the null hypothesis is composite-that is, when parameters of the null model are estimated. Several solutions to this problem have been suggested, including the calculation of...
Persistent link: https://www.econbiz.de/10008697470
We show that spline and wavelet series regression estimators for weakly dependent regressors attain the optimal uniform (i.e. sup-norm) convergence rate (n= log n)..p=(2p+d) of Stone (1982), where d is the number of regressors and p is the smoothness of the regression function. The optimal rate...
Persistent link: https://www.econbiz.de/10010458629
This article introduces and investigates the properties of a new bootstrap method for time-series data, the kernel block bootstrap. The bootstrap method, although akin to, offers an improvement over the tapered block bootstrap of Paparoditis and Politis (2001), admitting kernels with unbounded...
Persistent link: https://www.econbiz.de/10011878210
Moment restriction semiparametric models, where both the dimension of parameter and the number of restrictions are divergent and an unknown function is involved, are studied using the generalized method of moments (GMM) and sieve method dealing with the nonparametric parameter. The consistency...
Persistent link: https://www.econbiz.de/10011775182
We consider nonlinear moment restriction semiparametric models where both the dimension of the parameter vector and the number of restrictions are divergent with sample size and an unknown smooth function is involved. We propose an estimation method based on the sieve generalized method of...
Persistent link: https://www.econbiz.de/10011938037
We consider approximating a multivariate regression function by an affine combination of one-dimensional conditional component regression functions. The weight parameters involved in the approximation are estimated by least squares on the first-stage nonparametric kernel estimates. We establish...
Persistent link: https://www.econbiz.de/10009620324
This paper considers efficient estimation of copula-based semiparametric strictly stationary Markov models. These models are characterized by nonparametric invariant distributions and parametric copula functions; where the copulas capture all scale-free temporal dependence and tail dependence of...
Persistent link: https://www.econbiz.de/10003817253