Showing 1 - 10 of 52
We study a longitudinal data model with nonparametric regression functions that may vary across the observed subjects. In a wide range of applications, it is natural to assume that not every subject has a completely different regression function. We may rather suppose that the observed subjects...
Persistent link: https://www.econbiz.de/10011775203
This paper studies identification and inference in transformation models with endogenous censoring. Many kinds of …, can be viewed as transformation models. I allow the censoring of duration outcome to be arbitrarily correlated with …
Persistent link: https://www.econbiz.de/10012165377
We develop a practical way of addressing the Errors-In-Variables (EIV) problem in the Generalized Method of Moments (GMM) framework. We focus on the settings in which the variance of the measurement errors is a fraction of that of the mismeasured variables, which is typical for empirical...
Persistent link: https://www.econbiz.de/10013041400
We develop a practical way of addressing the Errors-In-Variables (EIV) problem in the Generalized Method of Moments (GMM) framework. We focus on the settings in which the variability of the EIV is a fraction of that of the mismeasured variables, which is typical for empirical applications. For...
Persistent link: https://www.econbiz.de/10015178608
The aim of this paper is to provide simple nonparametric methods to estimate finitemixture models from data with repeated measurements. Three measurements suffice for the mixture to be fully identified and so our approach can be used even with very short panel data. We provide distribution...
Persistent link: https://www.econbiz.de/10010254835
Standard approaches to constructing nonparametric confidence bands for functions are frustrated by the impact of bias, which generally is not estimated consistently when using the bootstrap and conventionally smoothed function estimators. To overcome this problem, it is common practice to either...
Persistent link: https://www.econbiz.de/10009759778
In nonparametric instrumental variables estimation, the mapping that identifies the function of interest, g say, is discontinuous and must be regularised (that is, modified) to make consistent estimation possible. The amount of modification is contolled by a regularisation parameter. The optimal...
Persistent link: https://www.econbiz.de/10009760143
This paper is concerned with inference about an unidentified linear function, L(g), where the function g satisfies the relation Y=g(X)+U; E(U |W)=0. In this relation, Y is the dependent variable, X is a possibly endogenous explanatory variable, W is an instrument for X and U is an unobserved...
Persistent link: https://www.econbiz.de/10009761386
Economic theory rarely provides a parametric specification for a model, but it often provides shape restrictions. We consider nonparametric estimation of the heterogeneous demand for gasoline in the U.S. subject to the Slutsky inequality restriction of consumer choice theory. We derive...
Persistent link: https://www.econbiz.de/10010191187
This paper considers the class of p-dimensional elliptic distributions (p ≥ 1) satisfying the consistency property (Kano, 1994) and within this general frame work presents a two-stage semiparametric estimator for the Lebesgue density based on Gaussian mixture sieves. Under the online...
Persistent link: https://www.econbiz.de/10009783112