Showing 1 - 10 of 261
This article introduces and investigates the properties of a new bootstrap method for time-series data, the kernel block bootstrap. The bootstrap method, although akin to, offers an improvement over the tapered block bootstrap of Paparoditis and Politis (2001), admitting kernels with unbounded...
Persistent link: https://www.econbiz.de/10011878210
This paper applies a novel bootstrap method, the kernel block bootstrap, to quasi-maximum likelihood estimation of dynamic models with stationary strong mixing data. The method first kernel weights the components comprising the quasi-log likelihood function in an appropriate way and then samples...
Persistent link: https://www.econbiz.de/10012115888
This article generalizes and extends the kernel block bootstrap (KBB) method of Parente and Smith (2018, 2021) to provide a comprehensive treatment of its use for GMM estimation and inference in time-series models formulated in terms of moment conditions. KBB procedures that employ bootstrap...
Persistent link: https://www.econbiz.de/10014520806
This paper develops a specification test for the instrument validity conditions in the heterogeneous treatment effect model with a binary treatment and a discrete instrument. A necessary testable implication for the joint restriction of instrument exogeneity and instrument monotonicity is given...
Persistent link: https://www.econbiz.de/10010190476
This paper develops a specification test for instrument validity in the heterogeneous treatment effect model with a binary treatment and a discrete instrument. The strongest testable implication for instrument validity is given by the condition for nonnegativity of point-identifiable complier's...
Persistent link: https://www.econbiz.de/10010392075
This paper introduces a bootstrap-based inference method for functions of the parameter vector in a moment (in)equality model. As a special case, our method yields marginal confidence sets for individual coordinates of this parameter vector. Our inference method controls asymptotic size...
Persistent link: https://www.econbiz.de/10010348998
In an attempt to free bootstrap theory from the shackles of asymptotic considerations, this paper studies the possibility of justifying, or validating, the bootstrap, not by letting the sample size tend to infinity, but by considering the sequence of bootstrap P values obtained by iterating the...
Persistent link: https://www.econbiz.de/10011295590
This paper introduces a bootstrap-based inference method for functions of the parameter vector in a moment (in)equality model. As a special case, our method yields marginal confidence sets for individual coordinates of this parameter vector. Our inference method controls asymptotic size...
Persistent link: https://www.econbiz.de/10011326079
This paper is concerned with developing uniform confidence bands for functions estimated nonparametrically with instrumental variables. We show that a sieve nonparametric instrumental variables estimator is pointwise asymptotically normally mental variables estimator is pointwise asymptotically...
Persistent link: https://www.econbiz.de/10003990115
Quantile regression (QR) is a principal regression method for analyzing the impact of covariates on outcomes. The impact is described by the conditional quantile function and its functionals. In this paper we develop the nonparametric QR series framework, covering many regressors as a special...
Persistent link: https://www.econbiz.de/10009153247