Showing 1 - 10 of 507
Nonparametric regression with spatial, or spatio-temporal, data is considered. The conditional mean of a dependent variable, given explanatory ones, is a nonparametric function, while the conditional covariance reflects spatial correlation. Conditional heteroscedasticity is also allowed, as well...
Persistent link: https://www.econbiz.de/10008906533
The impact of measurement error in explanatory variables on quantile regression functions is investigated using a small variance approximation. The approximation shows how the error contaminated and error free quantile regression functions are related. A key factor is the distribution of the...
Persistent link: https://www.econbiz.de/10011644163
The leading strategy for analyzing unstructured data uses two steps. First, latent variables of economic interest are estimated with an upstream information retrieval model. Second, the estimates are treated as "data" in a downstream econometric model. We establish theoretical arguments for why...
Persistent link: https://www.econbiz.de/10014529335
We propose a notion of conditional vector quantile function and a vector quantile regression. A conditional vector quantile function (CVQF) of a random vector Y, taking values in Rd given covariates Z=z, taking values in Rk, is a map u -- QY|Z(u,z), which is monotone, in the sense of being a...
Persistent link: https://www.econbiz.de/10010459266
Let Y be an outcome of interest, X a vector of treatment measures, and W a vector of pre-treatment control variables. Here X may include (combinations of) continuous, discrete, and/or non-mutually exclusive "treatments". Consider the linear regression of Y onto X in a subpopulation homogenous in...
Persistent link: https://www.econbiz.de/10011924562
We show that the generalized method of moments (GMM) estimation problem in instrumental variable quantile regression (IVQR) models can be equivalently formulated as a mixed integer quadratic programming problem. This enables exact computation of the GMM estimators for the IVQR models. We...
Persistent link: https://www.econbiz.de/10011775368
The instrumental variable quantile regression (IVQR) model (Chernozhukov and Hansen, 2005) is a popular tool for estimating causal quantile effects with endogenous covariates. However, estimation is complicated by the non-smoothness and non-convexity of the IVQR GMM objective function. This...
Persistent link: https://www.econbiz.de/10012053040
There exists a useful framework for jointly implementing Durbin-Wu-Hausman exogeneity and Sargan-Hansen overidenti cation tests, as a single arti cial regression. This note sets out the framework for linear models and discusses its extension to non-linear models. It also provides an empirical...
Persistent link: https://www.econbiz.de/10012008229
Berkson errors are commonplace in empirical microeconomics and occur whenever we observe an average in a specified group rather than the true individual value. In consumer demand this form of measurement error is present because the price an individual pays is often measured by the average price...
Persistent link: https://www.econbiz.de/10011935703
We study the problem of nonparametric regression when the regressor is endogenous, which is an important nonparametric instrumental variables (NPIV) regression in econometrics and a difficult ill-posed inverse problem with unknown operator in statistics. We first establish a general upper bound...
Persistent link: https://www.econbiz.de/10010197046