Showing 1 - 10 of 589
This paper studies nonparametric estimation of conditional moment models in which the residual functions could be nonsmooth with respect to the unknown functions of endogenous variables. It is a problem of nonparametric nonlinear instrumental variables (IV) estimation, and a difficult nonlinear...
Persistent link: https://www.econbiz.de/10003739667
This article generalizes and extends the kernel block bootstrap (KBB) method of Parente and Smith (2018, 2021) to provide a comprehensive treatment of its use for GMM estimation and inference in time-series models formulated in terms of moment conditions. KBB procedures that employ bootstrap...
Persistent link: https://www.econbiz.de/10014520806
We show that the generalized method of moments (GMM) estimation problem in instrumental variable quantile regression (IVQR) models can be equivalently formulated as a mixed integer quadratic programming problem. This enables exact computation of the GMM estimators for the IVQR models. We...
Persistent link: https://www.econbiz.de/10011775368
We develop a practical way of addressing the Errors-In-Variables (EIV) problem in the Generalized Method of Moments (GMM) framework. We focus on the settings in which the variability of the EIV is a fraction of that of the mismeasured variables, which is typical for empirical applications. For...
Persistent link: https://www.econbiz.de/10015178608
We establish the consistency and asymptotic normality for a class of estimators that are linear combinations of a set of √n– consistent estimators whose cardinality increases with sample size. A special case of our framework corresponds to the conditional moment restriction and the implied...
Persistent link: https://www.econbiz.de/10009620338
This paper proposes a simple and efficient estimation procedure for the model with non-ignorable missing data studied by Morikawa and Kim (2016). Their semiparametrically efficient estimator requires explicit non- parametric estimation and so suffers from the curse of dimensionality and requires...
Persistent link: https://www.econbiz.de/10011775117
Moment restriction semiparametric models, where both the dimension of parameter and the number of restrictions are divergent and an unknown function is involved, are studied using the generalized method of moments (GMM) and sieve method dealing with the nonparametric parameter. The consistency...
Persistent link: https://www.econbiz.de/10011775182
This paper shows how to construct locally robust semiparametric GMM estimators, meaning equivalently moment conditions have zero derivative with respect to the first step and the first step does not affect the asymptotic variance. They are constructed by adding to the moment functions the...
Persistent link: https://www.econbiz.de/10011517194
We give a general construction of debiased/locally robust/orthogonal (LR) moment functions for GMM, where the derivative with respect to first step nonparametric estimation is zero and equivalently first step estimation has no effect on the influence function. This construction consists of...
Persistent link: https://www.econbiz.de/10011824067
We consider nonlinear moment restriction semiparametric models where both the dimension of the parameter vector and the number of restrictions are divergent with sample size and an unknown smooth function is involved. We propose an estimation method based on the sieve generalized method of...
Persistent link: https://www.econbiz.de/10011938037