Showing 1 - 10 of 504
We consider estimation of a linear or nonparametric additive model in which a few coefficients or additive components are "large" and may be objects of substantive interest, whereas others are "small" but not necessarily zero. The number of small coefficients or additive components may exceed...
Persistent link: https://www.econbiz.de/10009567830
This paper makes several important contributions to the literature about nonparametric instrumental variables (NPIV) estimation and inference on a structural function h0 and its functionals. First, we derive sup-norm convergence rates for computationally simple sieve NPIV (series 2SLS)...
Persistent link: https://www.econbiz.de/10011596624
We study identification and estimation of the average treatment effect in a correlated random coefficients model that allows for first stage heterogeneity and binary instruments. The model also allows for multiple endogenous variables and interactions between endogenous variables and covariates....
Persistent link: https://www.econbiz.de/10010227690
Parametric copulas are shown to be attractive devices for specifying quantile autoregressive models for nonlinear time-series. Estimation of local, quantile-specific copula-based time series models offers some salient advantages over classical global parametric approaches. Consistency and...
Persistent link: https://www.econbiz.de/10003765985
Accurate, real-time measurements of price index changes using electronic records are essential for tracking inflation and productivity in today's economic environment. We develop empirical hedonic models that can process large amounts of unstructured product data (text, images, prices,...
Persistent link: https://www.econbiz.de/10014261216
This paper studies the identification of nonseparable models with continuous, endogenous regressors, also called treatments, using repeated cross sections. We show that several treatment effect parameters are identified under two assumptions on the effect of time, namely a weak stationarity...
Persistent link: https://www.econbiz.de/10009783113
Fixed effects estimators of nonlinear panel data models can be severely biased because of the well-known incidental parameter problem. We develop analytical and jackknife bias corrections for nonlinear models with both individual and time effects. Under asymptotic sequences where the...
Persistent link: https://www.econbiz.de/10010209259
Fixed effects estimators of nonlinear panel data models can be severely biased because of the well-known incidental parameter problem. We develop analytical and jackknife bias corrections for nonlinear models with both individual and time effects. Under asymptotic sequences where the...
Persistent link: https://www.econbiz.de/10010382120
Fixed effects estimators of nonlinear panel data models can be severely biased because of the incidental parameter problem. We develop analytical and jackknife bias corrections for nonlinear models with both individual and time effects. Under asymptotic sequences where the time-dimension (T)...
Persistent link: https://www.econbiz.de/10010501255
Persistent link: https://www.econbiz.de/10003367500