Showing 1 - 10 of 108
This paper provides a novel approach to forecasting time series subject to discrete structural breaks. We propose a Bayesian estimation and prediction procedure that allows for the possibility of new breaks over the forecast horizon, taking account of the size and duration of past breaks (if...
Persistent link: https://www.econbiz.de/10010276165
Present value calculations require predictions of cash flows both at near and distant future points in time. Such predictions are generally surrounded by considerable uncertainty and may critically depend on assumptions about parameter values as well as the form and stability of the data...
Persistent link: https://www.econbiz.de/10010276173
We develop novel forecasting methods for panel data with heterogeneous parameters and examine them together with existing approaches. We conduct a systematic comparison of their predictive accuracy in settings with different cross-sectional (N) and time (T) dimensions and varying degrees of...
Persistent link: https://www.econbiz.de/10013292495
Empirical evidence suggests that many macroeconomic and financial time series are subject to occasional structural breaks. In this paper we present analytical results quantifying the effects of such breaks on the correlation between the forecast and the realization and on the ability to forecast...
Persistent link: https://www.econbiz.de/10010315729
Autoregressive models are used routinely in forecasting and often lead to better performance than more complicated models. However, empirical evidence is also suggesting that the autoregressive representations of many macroeconomic and financial time series are likely to be subject to structural...
Persistent link: https://www.econbiz.de/10010315778
This paper considers the problems facing decision-makers using econometric models in real time. It identifies the key stages involved and highlights the role of automated systems in reducing the effect of data snooping. It sets out many choices that researchers face in construction of automated...
Persistent link: https://www.econbiz.de/10010315908
We develop novel forecasting methods for panel data with heterogeneous parameters and examine them together with existing approaches. We conduct a systematic comparison of their predictive accuracy in settings with different cross-sectional (N) and time (T) dimensions and varying degrees of...
Persistent link: https://www.econbiz.de/10013266655
In this paper we focus on estimating the degree of cross-sectional dependence in the error terms of a classical panel data regression model. For this purpose we propose an estimator of the exponent of cross-sectional dependence denoted by α; which is based on the number of non-zero pair-wise...
Persistent link: https://www.econbiz.de/10012908680
This paper proposes a quantile regression estimator for a heterogeneous panel model with lagged dependent variables and interactive effects. The paper adopts the Common Correlated Effects (CCE) approach proposed by Pesaran (2006) and Chudik and Pesaran (2015) and demonstrates that the extension...
Persistent link: https://www.econbiz.de/10012908711
This paper considers the problem of identification, estimation and inference in the case of spatial panel data models with heterogeneous spatial lag coefficients, with and without (weakly) exogenous regressors, and subject to heteroskedastic errors. A quasi maximum likelihood (QML) estimation...
Persistent link: https://www.econbiz.de/10012890630