Showing 1 - 10 of 57
This paper applies three universal approximators for forecasting. They are the Artificial Neural Networks, the Kolmogorov-Gabor polynomials, as well as the Elliptic Basis Function Networks. Even though forecast combination has a long history in econometrics focus has not been on proving loss...
Persistent link: https://www.econbiz.de/10005012487
In this paper we consider the forecasting performance of a well-defined class of flexible models, the so-called single hidden-layer feedforward neural network models. A major aim of our study is to find out whether they, due to their flexibility, are as useful tools in economic forecasting as...
Persistent link: https://www.econbiz.de/10009277000
The paper introduces the model confidence set (MCS) and applies it to the selection of models. A MCS is a set of models that is constructed such that it will contain the best model with a given level of confidence. The MCS is in this sense analogous to a confidence interval for a parameter. The...
Persistent link: https://www.econbiz.de/10008784441
The notion of model-free implied volatility (MFIV), constituting the basis for the highly publicized VIX volatility index, can be hard to measure with accuracy due to the lack of precise prices for options with strikes in the tails of the return distribution. This is reflected in practice as the...
Persistent link: https://www.econbiz.de/10005440033
In the present paper we suggest to model Realized Volatility, an estimate of daily volatility based on high frequency data, as an Inverse Gaussian distributed variable with time varying mean, and we examine the joint properties of Realized Volatility and asset returns. We derive the appropriate...
Persistent link: https://www.econbiz.de/10005440036
This paper proposes a methodology for modelling time series of realized covariance matrices in order to forecast multivariate risks. The approach allows for flexible dynamic dependence patterns and guarantees positive definiteness of the resulting forecasts without imposing parameter...
Persistent link: https://www.econbiz.de/10005440044
Forecasting using factor models based on large data sets have received ample attention due to the models’ ability to increase forecast accuracy with respect to a range of key macroeconomic variables in the US and the UK. However, forecasts based on such factor models do not uniformly...
Persistent link: https://www.econbiz.de/10005440058
A two-stage forecasting approach for long memory time series is introduced. In the first step we estimate the fractional exponent and, applying the fractional differencing operator, we obtain the underlying weakly dependent series. In the second step, we perform the multi-step ahead forecasts...
Persistent link: https://www.econbiz.de/10011099291
We study the short-term price behavior of Phase 2 EU emission allowances. We model returns and volatility dynamics, and we demonstrate that a standard ARMAX-GARCH framework is inadequate for this modeling and that the gaussianity assumption is rejected due to a number of outliers. To improve the...
Persistent link: https://www.econbiz.de/10011158461
We construct daily house price indices for ten major U.S. metropolitan areas. Our calculations are based on a comprehensive database of several million residential property transactions and a standard repeat-sales method that closely mimics the methodology of the popular monthly Case-Shiller...
Persistent link: https://www.econbiz.de/10011118617