Showing 1 - 3 of 3
We perform a comparative analysis of machine learning methods for the canonical problem of empirical asset pricing: measuring asset risk premia. We demonstrate large economic gains to investors using machine learning forecasts, in some cases doubling the performance of leading regression-based...
Persistent link: https://www.econbiz.de/10012899608
We propose a new measure of time-varying tail risk that is directly estimable from the cross section of returns. We exploit firm-level price crashes every month to identify common fluctuations in tail risk across stocks. Our tail measure is significantly correlated with tail risk measures...
Persistent link: https://www.econbiz.de/10013063059
We reconsider the idea of trend-based predictability using methods that flexibly learn price patterns that are most predictive of future returns, rather than testing hypothesized or pre-specified patterns (e.g., momentum and reversal). Our raw predictor data are images—stock-level price...
Persistent link: https://www.econbiz.de/10013248300