Showing 1 - 10 of 22
Data snooping is a major concern in empirical asset pricing. We develop a new framework to rigorously perform multiple hypothesis testing in linear asset pricing models, while limiting the occurrence of false positive results typically associated with data snooping. By exploiting a variety of...
Persistent link: https://www.econbiz.de/10012851219
We consider a nonparametric time series regression model. Our framework allows precise estimation of betas without the usual assumption of betas being piecewise constant. This property makes our framework particularly suitable to study individual stocks. We provide an inference framework for all...
Persistent link: https://www.econbiz.de/10012894411
We perform a comparative analysis of machine learning methods for the canonical problem of empirical asset pricing: measuring asset risk premia. We demonstrate large economic gains to investors using machine learning forecasts, in some cases doubling the performance of leading regression-based...
Persistent link: https://www.econbiz.de/10012899608
We develop the necessary methodology to conduct principal component analysis at high frequency. We construct estimators of realized eigenvalues, eigenvectors, and principal components and provide the asymptotic distribution of these estimators. Empirically, we study the high frequency covariance...
Persistent link: https://www.econbiz.de/10012971197
We introduce downward volatility jumps into a general non-affine modeling framework of the term structure of variance. With variance swaps and S&P 500 returns, we find that downward volatility jumps are associated with a resolution of policy uncertainty, mostly through statements from FOMC...
Persistent link: https://www.econbiz.de/10012973824
This paper constructs an estimator for the number of common factors in a setting where both the sampling frequency and the number of variables increase. Empirically, we document that the covariance matrix of a large portfolio of US equities is well represented by a low rank common structure with...
Persistent link: https://www.econbiz.de/10013003349
Estimating the covariance between assets using high frequency data is challenging due to market microstructure effects and asynchronous trading. In this paper we develop a multivariate realised quasi maximum likelihood (QML) approach, carrying out inference as if the observations arise from an...
Persistent link: https://www.econbiz.de/10013008145
We investigate estimators of factor-model-based large covariance (and precision) matrices using high-frequency data, which are asynchronous and potentially contaminated by the market microstructure noise. Our estimation strategies rely on the pre-averaging method with refresh time to solve the...
Persistent link: https://www.econbiz.de/10012962663
We consider two new approaches to nonparametric estimation of the leverage effect. The first approach uses stock prices alone. The second approach uses the data on stock prices as well as a certain volatility instrument, such as the CBOE volatility index (VIX) or the Black-Scholes implied...
Persistent link: https://www.econbiz.de/10013034657
We propose a semiparametric two-step inference procedure for a finite-dimensional parameter based on moment conditions constructed from high-frequency data. The population moment conditions take the form of temporally integrated functionals of state-variable processes that include the latent...
Persistent link: https://www.econbiz.de/10013028818