Showing 1 - 10 of 22
We develop the necessary methodology to conduct principal component analysis at high frequency. We construct estimators of realized eigenvalues, eigenvectors, and principal components and provide the asymptotic distribution of these estimators. Empirically, we study the high frequency covariance...
Persistent link: https://www.econbiz.de/10012971197
Standard estimators of risk premia in linear asset pricing models are biased if some priced factors are omitted. We propose a three-pass method to estimate the risk premium of an observable factor, which is valid even when not all factors in the model are specified or observed. We show that the...
Persistent link: https://www.econbiz.de/10012902686
We perform a comparative analysis of machine learning methods for the canonical problem of empirical asset pricing: measuring asset risk premia. We demonstrate large economic gains to investors using machine learning forecasts, in some cases doubling the performance of leading regression-based...
Persistent link: https://www.econbiz.de/10012899608
We reconsider the idea of trend-based predictability using methods that flexibly learn price patterns that are most predictive of future returns, rather than testing hypothesized or pre-specified patterns (e.g., momentum and reversal). Our raw predictor data are images—stock-level price...
Persistent link: https://www.econbiz.de/10013248300
We propose a semiparametric two-step inference procedure for a finite-dimensional parameter based on moment conditions constructed from high-frequency data. The population moment conditions take the form of temporally integrated functionals of state-variable processes that include the latent...
Persistent link: https://www.econbiz.de/10013028818
We document a striking block-diagonal pattern in the factor model residual covariances of the S&P 500 Equity Index constituents, after sorting the assets by their assigned Global Industry Classification Standard (GICS) codes. Cognizant of this structure, we propose combining a location-based...
Persistent link: https://www.econbiz.de/10013030559
We consider two new approaches to nonparametric estimation of the leverage effect. The first approach uses stock prices alone. The second approach uses the data on stock prices as well as a certain volatility instrument, such as the CBOE volatility index (VIX) or the Black-Scholes implied...
Persistent link: https://www.econbiz.de/10013034657
This paper constructs an estimator for the number of common factors in a setting where both the sampling frequency and the number of variables increase. Empirically, we document that the covariance matrix of a large portfolio of US equities is well represented by a low rank common structure with...
Persistent link: https://www.econbiz.de/10013003349
Estimating the covariance between assets using high frequency data is challenging due to market microstructure effects and asynchronous trading. In this paper we develop a multivariate realised quasi maximum likelihood (QML) approach, carrying out inference as if the observations arise from an...
Persistent link: https://www.econbiz.de/10013008145
We develop estimators and asymptotic theory to decompose the quadratic covariation between two assets into its continuous and jump components, in a manner that is robust to the presence of market microstructure noise. Using high frequency data on different assets classes, we find that the recent...
Persistent link: https://www.econbiz.de/10013055341