Showing 1 - 5 of 5
We present a new approach for studying the problem of optimal hedging of a European option in a finite and complete discrete-time market model. We consider partial hedging strategies that maximize the success probability or minimize the expected shortfall under a cost constraint and show that...
Persistent link: https://www.econbiz.de/10010759248
As a main contribution we present a new approach for studying the problem of optimal partial hedging of an American contingent claim in a finite and complete discrete-time market. We assume that at an early exercise time the investor can borrow the amount she has to pay for the option holder by...
Persistent link: https://www.econbiz.de/10010759512
The problem of hedging and pricing sequences of contingent claims in large financial markets is studied. Connection between asymptotic arbitrage and behavior of the α-quantile price is shown. The large Black–Scholes model is carefully examined. Copyright Springer-Verlag 2007
Persistent link: https://www.econbiz.de/10010759412
The paper studies connections between arbitrage and utility maximization in a discrete-time financial market. The market is incomplete. Thus one has several choices of equivalent martingale measures to price contingent claims. Davis determines a unique price for a contingent claim which is based...
Persistent link: https://www.econbiz.de/10010847835
In a discrete-time financial market setting, the paper relates various concepts introduced for dynamic portfolios (both in discrete and in continuous time). These concepts are: value preserving portfolios, numeraire portfolios, interest oriented portfolios, and growth optimal portfolios. It will...
Persistent link: https://www.econbiz.de/10010759389