Showing 1 - 10 of 54
This paper introduces a new confidence interval (CI) for the autoregressive parameter (AR) in an AR(1) model that allows for conditional heteroskedasticity of general form and AR parameters that are less than or equal to unity. The CI is a modification of Mikusheva's (2007a) modification of...
Persistent link: https://www.econbiz.de/10013096518
This paper introduces a new confidence interval (CI) for the autoregressive parameter (AR) in an AR(1) model that allows for conditional heteroskedasticity of general form and AR parameters that are less than or equal to unity. The CI is a modification of Mikusheva's (2007a) modification of...
Persistent link: https://www.econbiz.de/10014179348
This paper analyzes the properties of standard estimators, tests, and confidence sets (CS's) in a class of models in which the parameters are unidentified or weakly identified in some parts of the parameter space. The paper also introduces methods to make the tests and CS's robust to such...
Persistent link: https://www.econbiz.de/10013137345
This paper analyzes the properties of standard estimators, tests, and confidence sets (CS's) for parameters that are unidentified or weakly identified in some parts of the parameter space. The paper also introduces methods to make the tests and CS's robust to such identification problems. The...
Persistent link: https://www.econbiz.de/10013122106
Lieberman and Phillips (2016; Journal of Econometrics; LP) introduced a multivariate stochastic unit root (STUR) model, which allows for random, time varying local departures from a unit root (UR) model, where nonlinear least squares (NLLS) may be used for estimation and inference on the STUR...
Persistent link: https://www.econbiz.de/10014123916
Using the power kernels of Phillips, Sun and Jin (2006, 2007), we examine the large sample asymptotic properties of the t-test for different choices of power parameter (rho). We show that the nonstandard fixed-rho limit distributions of the t-statistic provide more accurate approximations to the...
Persistent link: https://www.econbiz.de/10013148975
While differencing transformations can eliminate nonstationarity, they typically reduce signal strength and correspondingly reduce rates of convergence in unit root autoregressions. The present paper shows that aggregating moment conditions that are formulated in differences provides an orderly...
Persistent link: https://www.econbiz.de/10013148982
A time-varying autoregression is considered with a similarity-based coefficient and possible drift. It is shown that the random walk model has a natural interpretation as the leading term in a small-sigma expansion of a similarity model with an exponential similarity function as its...
Persistent link: https://www.econbiz.de/10013075939
In time series regression with nonparametrically autocorrelated errors, it is now standard empirical practice to construct confidence intervals for regression coefficients on the basis of nonparametrically studentized t-statistics. The standard error used in the studentization is typically...
Persistent link: https://www.econbiz.de/10012771849
This paper considers a mean zero stationary first-order autoregressive (AR) model. It is shown that the least squares estimator and t statistic have Cauchy and standard normal asymptotic distributions, respectively, when the AR parameter rho_n is very near to one in the sense that 1 - rho_n =...
Persistent link: https://www.econbiz.de/10012777506