Showing 1 - 10 of 39
We provide methods for inference on a finite dimensional parameter of interest, theta in Re^{d_theta}, in a semiparametric probability model when an infinite dimensional nuisance parameter, g, is present. We depart from the semiparametric literature in that we do not require that the pair...
Persistent link: https://www.econbiz.de/10014175416
In complicated/nonlinear parametric models, it is generally hard to know whether the model parameters are point identified. We provide computationally attractive procedures to construct confidence sets (CSs) for identified sets of full parameters and of subvectors in models defined through a...
Persistent link: https://www.econbiz.de/10012946865
Parametric mixture models are commonly used in applied work, especially empirical economics, where these models are often employed to learn for example about the proportions of various types in a given population. This paper examines the inference question on the proportions (mixing probability)...
Persistent link: https://www.econbiz.de/10013082022
In complicated/nonlinear parametric models, it is hard to determine whether a parameter of interest is formally point identified. We provide computationally attractive procedures to construct confidence sets (CSs) for identified sets of parameters in econometric models defined through a...
Persistent link: https://www.econbiz.de/10012992956
In complicated/nonlinear parametric models, it is generally hard to determine whether the model parameters are (globally) point identified. We provide computationally attractive procedures to construct confidence sets (CSs) for identified sets of parameters in econometric models defined through...
Persistent link: https://www.econbiz.de/10012987320
This paper computes the semiparametric efficiency bound for finite dimensional parameters identified by models of sequential moment restrictions containing unknown functions. Our results extend those of Chamberlain (1992b) and Ai and Chen (2003) for semiparametric conditional moment restriction...
Persistent link: https://www.econbiz.de/10014203169
Parametric copulas are shown to be attractive devices for specifying quantile autoregressive models for nonlinear time-series. Estimation of local, quantile-specific copula-based time series models offers some salient advantages over classical global parametric approaches. Consistency and...
Persistent link: https://www.econbiz.de/10014213937
Nonlinearities in the drift and diffusion coefficients influence temporal dependence in scalar diffusion models. We study this link using two notions of temporal dependence: beta-mixing and rho-mixing. We show that beta-mixing and rho-mixing with exponential decay are essentially equivalent...
Persistent link: https://www.econbiz.de/10014218155
This paper studies nonparametric estimation of conditional moment models in which the residual functions could be nonsmooth with respect to the unknown functions of endogenous variables. It is a problem of nonparametric nonlinear instrumental variables (IV) estimation, and a difficult nonlinear...
Persistent link: https://www.econbiz.de/10014218576
This paper makes several contributions to the literature on the important yet difficult problem of estimating functions nonparametrically using instrumental variables. First, we derive the minimax optimal sup-norm convergence rates for nonparametric instrumental variables (NPIV) estimation of...
Persistent link: https://www.econbiz.de/10014136704