Showing 1 - 10 of 42
The method of sieves has been widely used in estimating semiparametric and nonparametric models. In this paper, we first provide a general theory on the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of semi/nonparametric time series models. Next, we...
Persistent link: https://www.econbiz.de/10009649696
In this note, we characterize the semiparametric efficiency bound for a class of semiparametric models in which the unknown nuisance functions are identified via nonparametric conditional moment restrictions with possibly non-nested or over-lapping conditioning sets, and the finite dimensional...
Persistent link: https://www.econbiz.de/10010812538
This paper overviews recent developments in series estimation of stochastic processes and some of their applications in econometrics. Underlying this approach is the idea that a stochastic process may under certain conditions be represented in terms of a set of orthonormal basis functions,...
Persistent link: https://www.econbiz.de/10010817212
Model selection and associated issues of post-model selection inference present well known challenges in empirical econometric research. These modeling issues are manifest in all applied work but they are particularly acute in multivariate time series settings such as cointegrated systems where...
Persistent link: https://www.econbiz.de/10010817231
Employing power kernels suggested in earlier work by the authors (2003), this paper shows how to re.ne methods of robust inference on the mean in a time series that rely on families of untruncated kernel estimates of the long-run parameters. The new methods improve the size properties of...
Persistent link: https://www.econbiz.de/10005464005
A new class of kernel estimates is proposed for long run variance (LRV) and heteroskedastic autocorrelation consistent (HAC) estimation. The kernels are called steep origin kernels and are related to a class of sharp origin kernels explored by the authors (2003) in other work. They are...
Persistent link: https://www.econbiz.de/10004990684
The local Whittle (or Gaussian semiparametric) estimator of long range dependence, proposed by Kunsch (1987) and analyzed by Robinson (1995a), has a relatively slow rate of convergence and a finite sample bias that can be large. In this paper, we generalize the local Whittle estimator to...
Persistent link: https://www.econbiz.de/10004990777
In time series regressions with nonparametrically autocorrelated errors, it is now standard empirical practice to use kernel-based robust standard errors that involve some smoothing function over the sample autocorrelations. The underlying smoothing parameter b, which can be defined as the ratio...
Persistent link: https://www.econbiz.de/10005093965
In time series regression with nonparametrically autocorrelated errors, it is now standard empirical practice to construct confidence intervals for regression coefficients on the basis of nonparametrically studentized t-statistics. The standard error used in the studentization is typically...
Persistent link: https://www.econbiz.de/10005087368
The local Whittle (or Gaussian semiparametric) estimator of long range dependence, proposed by Kunsch (1987) and analyzed by Robinson (1995a), has a relatively slow rate of convergence and a finite sample bias that can be large. In this paper, we generalize the local Whittle estimator to...
Persistent link: https://www.econbiz.de/10005087380