Showing 1 - 10 of 113
This paper determines coverage probability errors of both delta method and parametric bootstrap confidence intervals (CIs) for the covariance parameters of stationary long-memory Gaussian time series. CIs for the long-memory parameter d_0 are included. The results establish that the bootstrap...
Persistent link: https://www.econbiz.de/10005464054
It is well known that a one-step scoring estimator that starts from any N^{1/2}-consistent estimator has the same first-order asymptotic efficiency as the maximum likelihood estimator. This paper extends this result to k-step estimators and test statistics for k = 1, higher-order asymptotic...
Persistent link: https://www.econbiz.de/10004990703
This paper provides bounds on the errors in coverage probabilities of maximum likelihood-based, percentile-t, parametric bootstrap confidence intervals for Markov time series processes. These bounds show that the parametric bootstrap for Markov time series provides higher-order improvements...
Persistent link: https://www.econbiz.de/10005093948
The asymptotic refinements attributable to the block bootstrap for time series are not as large as those of the nonparametric iid bootstrap or the parametric bootstrap. One reason is that the independence between the blocks in the block bootstrap sample does not mimic the dependence structure of...
Persistent link: https://www.econbiz.de/10005593249
This paper considers an empirical likelihood method to estimate the parameters of the quantile regression (QR) models and to construct confidence regions that are accurate in finite samples. To achieve the higher-order refinements, we smooth the estimating equations for the empirical likelihood....
Persistent link: https://www.econbiz.de/10005593469
This paper establishes the higher-order equivalence of the k-step bootstrap, introduced recently by Davidson and MacKinnon (1999a), and the standard bootstrap. The k-step bootstrap is a very attractive alternative computationally to the standard bootstrap for statistics based on nonlinear...
Persistent link: https://www.econbiz.de/10005593591
This paper studies estimation and specification testing in threshold regression with endogeneity. Three key results differ from those in regular models. First, both the threshold point and the threshold effect parameters are shown to be identified without the need for instrumentation. Second, in...
Persistent link: https://www.econbiz.de/10011096433
Suppose that the econometrician is interested in comparing two misspecified moment restriction models, where the comparison is performed in terms of some chosen measure of fit. This paper is concerned with describing an optimal test of the Vuong (1989) and Rivers and Vuong (2002) type null...
Persistent link: https://www.econbiz.de/10005068261
The method of sieves has been widely used in estimating semiparametric and nonparametric models. In this paper, we first provide a general theory on the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of semi/nonparametric time series models. Next, we...
Persistent link: https://www.econbiz.de/10009649696
The topic of this paper is inference in models in which parameters are defined by moment inequalities and/or equalities. The parameters may or may not be identified. This paper introduces a new class of confidence sets and tests based on generalized moment selection (GMS). GMS procedures are...
Persistent link: https://www.econbiz.de/10005464003