Showing 1 - 10 of 14
We establish the validity of an Edgeworth expansion to the distribution of the maximum likelihood estimator of the parameter of a stationary, Gaussian, strongly dependent process. The result covers ARFIMA type models, including fractional Gaussian noise. The method of proof consists of three...
Persistent link: https://www.econbiz.de/10005087373
The maximum likelihood estimator (MLE) of the fractional difference parameter in the Gaussian ARFIMA(0,d,0) model is well known to be asymptotically N(0,6/pi2). This paper develops a second order asymptotic expansion to the distribution of this statistic. The correction term for the density is...
Persistent link: https://www.econbiz.de/10005463881
This paper determines coverage probability errors of both delta method and parametric bootstrap confidence intervals (CIs) for the covariance parameters of stationary long-memory Gaussian time series. CIs for the long-memory parameter d_0 are included. The results establish that the bootstrap...
Persistent link: https://www.econbiz.de/10005464054
This paper extends recent findings of Lieberman and Phillips (2014) on stochastic unit root (SUR) models to a multivariate case including a comprehensive asymptotic theory for estimation of the model's parameters. The extensions are useful because they lead to a generalization of the...
Persistent link: https://www.econbiz.de/10011096425
A time-varying autoregression is considered with a similarity-based coefficient and possible drift. It is shown that the random walk model has a natural interpretation as the leading term in a small-sigma expansion of a similarity model with an exponential similarity function as its...
Persistent link: https://www.econbiz.de/10011184577
This paper derives second-order expansions for the distributions of the Whittle and profile plug-in maximum likelihood estimators of the fractional difference parameter in the ARFIMA(0,d,0) with unknown mean and variance. Both estimators are shown to be second-order pivotal. This extends earlier...
Persistent link: https://www.econbiz.de/10004990695
An agent is asked to assess a real-valued variable Y_{p} based on certain characteristics X_{p} = (X_{p}^{1},...,X_{p}^{m}), and on a database consisting (X_{i}^{1},...,X_{i}^{m},Y_{i}) for i = 1,...,n. A possible approach to combine past observations of X and Y with the current values of X to...
Persistent link: https://www.econbiz.de/10005093957
We provide in this paper asymptotic theory for the multivariate GARCH (p,q) process. Strong consistency of the quasi-maximum likelihood estimator (MLE) is established by appealing to conditions given in Jeantheau [19] in conjunction with a result given by Boussama [9] concerning the existence of...
Persistent link: https://www.econbiz.de/10005087376
We apply and extend Firth's (1993) modified score estimator to deal with a class of stationary Gaussian long-memory processes. Our estimator removes the first order bias of the maximum likelihood estimator. A small simulation study reveals the reduction in the bias is considerable, while it does...
Persistent link: https://www.econbiz.de/10005593251
There is an emerging consensus in empirical finance that realized volatility series typically display long range dependence with a memory parameter (d) around 0.4 (Andersen et. al. (2001), Martens et al. (2004)). The present paper provides some analytical explanations for this evidence and shows...
Persistent link: https://www.econbiz.de/10005593334