Showing 1 - 6 of 6
In parametric models a sufficient condition for local identification is that the vector of moment conditions is differentiable at the true parameter with full rank derivative matrix. We show that additional conditions are often needed in nonlinear, nonparametric models to avoid nonlinearities...
Persistent link: https://www.econbiz.de/10010817218
In parametric models a sufficient condition for local identification is that the vector of moment conditions is differentiable at the true parameter with full rank derivative matrix. We show that there are corresponding sufficient conditions for nonparametric models. A nonparametric rank...
Persistent link: https://www.econbiz.de/10009001017
This paper proposes a simple, fairly general, test for global identification of unconditional moment restrictions implied from point-identified conditional moment restrictions. The test is based on the Hausdorff distance between an estimator that is consistent even under global...
Persistent link: https://www.econbiz.de/10008872207
We present a simple way to estimate the effects of changes in a vector of observable variables X on a limited dependent variable Y when Y is a general nonseparable function of X and unobservables. We treat models in which Y is censored from above or below or potentially from both. The basic idea...
Persistent link: https://www.econbiz.de/10005463961
We present a simple way to estimate the effects of changes in a vector of observable variables X on a limited dependent variable Y when Y is a general nonseparable function of X and unobservables, and X is independent of the unobservables. We treat models in which Y is censored from above,...
Persistent link: https://www.econbiz.de/10009003657
In this paper, we develop a new censored quantile instrumental variable (CQIV) estimator and describe its properties and computation. The CQIV estimator combines Powell (1986) censored quantile regression (CQR) to deal semiparametrically with censoring, with a control variable approach to...
Persistent link: https://www.econbiz.de/10009001018