Showing 1 - 3 of 3
The main problem with localized discriminant techniques is the curse of dimensionality, which seems to restrict their use to the case of few variables. This restriction does not hold if localization is combined with a reduction of dimension. In particular it is shown that localization yields...
Persistent link: https://www.econbiz.de/10010266137
The use of generalized additive models in statistical data analysis suffers from the restriction to few explanatory variables and the problems of selection of smoothing parameters. Generalized additive model boosting circumvents these problems by means of stagewise fitting of weak learners. A...
Persistent link: https://www.econbiz.de/10010266217
Ridge regression is a well established method to shrink regression parameters towards zero, thereby securing existence of estimates. The present paper investigates several approaches to combining ridge regression with boosting techniques. In the direct approach the ridge estimator is used to fit...
Persistent link: https://www.econbiz.de/10010266233