Showing 1 - 10 of 69
We consider the partially linear model relating a response Y to predictors (X,T) with mean function XT ß + g (T) when the X's are measured with additive error. The semiparametric likelihood estimate of Severini and Staniswalis (1994) leads to biased estimates of both the parameter ß and the...
Persistent link: https://www.econbiz.de/10009657130
Motivated by a nonparametric GARCH model we consider nonparametric additive regression and autoregression models in the special case that the additive components are linked parametrically. We show that the parameter can be estimated with parametric rate and give the normal limit. Our procedure...
Persistent link: https://www.econbiz.de/10009579184
Persistent link: https://www.econbiz.de/10001918932
Persistent link: https://www.econbiz.de/10001919168
Persistent link: https://www.econbiz.de/10001919355
Persistent link: https://www.econbiz.de/10001919470
It is common practice to identify the number and sources of shocks that move implied volatilities across space and time by applying Principal Components Analysis (PCA) to pooled covariance matrices of changes in implied volatilities. This approach, however, is likely to result in a loss of...
Persistent link: https://www.econbiz.de/10009613597
The analysis of diffusion processes in financial models is crucially dependent on the form of the drift and diffusion coefficient functions. A methodology is proposed for estimating and testing coefficient functions for ergodic diffusions that are not directly observable. It is based on...
Persistent link: https://www.econbiz.de/10009613611
We consider a problem of estimation of parametric components in a partial linear model. Suppose that a finite set E of linear estimators is given. Our goal is to mimic the estimator in E that has the smallest risk. Using a second order expansion of the risk of linear estimators we propose a...
Persistent link: https://www.econbiz.de/10009614293
The bootstrap is a method for estimating the distribution of an estimator or test statistic by resampling one’s data or a model estimated from the data. The methods that are available for implementing the bootstrap and the accuracy of bootstrap estimates depend on whether the data are a random...
Persistent link: https://www.econbiz.de/10009614877