Showing 1 - 10 of 51
Several frequentist and Bayesian model averaging schemes, including a new one that simultaneously allows for parameter uncertainty, model uncertainty and time varying model weights, are compared in terms of forecast accuracy over a set of simulation experiments. Artificial data are generated,...
Persistent link: https://www.econbiz.de/10010731852
Several lessons learnt from a Bayesian analysis of basic macroeconomic time series models are presented for the situation where some model parameters have substantial posterior probability near the boundary of the parameter region. This feature refers to near-instability within dynamic models,...
Persistent link: https://www.econbiz.de/10010731830
An important feature of panel data is that it allows the estimation of parameters characterizing dynamics from individual level data. Several authors argue that such parameters can also be identified from repeated cross-section data and present estimators to do so. This paper reviews the...
Persistent link: https://www.econbiz.de/10010731681
The accuracy of real-time forecasts of macroeconomic variables that are subject to revisions may crucially depend on the choice of data used to compare the forecasts against. We put forward a flexible time-varying parameter regression framework to obtain early estimates of the final value of...
Persistent link: https://www.econbiz.de/10010731620
This paper develops a return forecasting methodology that allows for instabil ity in the relationship between stock returns and predictor variables, for model uncertainty, and for parameter estimation uncertainty. The predictive regres sion speci¯cation that is put forward allows for occasional...
Persistent link: https://www.econbiz.de/10010837764
Diffuse priors lead to pathological posterior behavior when used in Bayesian analyses of Simultaneous Equation Models (SEMs). This results from the local nonidentification of certain parameters in SEMs. When this, a priori known, feature is not captured appropriately, an a posteriori favor for...
Persistent link: https://www.econbiz.de/10010731562
In this paper, we make use of state space models to investigate the presence of stochastic trends in economic time series. A model is specified where such a trend can enter either in the autoregressive representation or in a separate state equation. Tests based on the former are analogous to...
Persistent link: https://www.econbiz.de/10010731571
Using annual data on real Gross Domestic Product per capita of seventeen industrialized nations in the twentieth century the empirical relevance of shocks, trends and cycles is investigated. A class of neural network models is specified as an extension of the class of vector autoregressive...
Persistent link: https://www.econbiz.de/10010731628
Exchange rates typically exhibit time-varying patterns in both means and variances. The histograms of such series indicate heavy tails. In this paper we construct models which enable a decision-maker to analyze the implications of such time series patterns for currency risk management. Our...
Persistent link: https://www.econbiz.de/10010731646
The flexibility of neural networks to handle complex data patterns of economic variables is well known. In this survey we present a brief introduction to a neural network and focus on two aspects of its flexibility . First, a neural network is used to recover the dynamic properties of a...
Persistent link: https://www.econbiz.de/10010731655