Showing 1 - 3 of 3
This paper discusses nonparametric kernel regression with the regressor being a d-dimensional ß-null recurrent process in presence of conditional heteroscedasticity. We show that the mean function estimator is consistent with convergence rate p n(T)hd, where n(T) is the number of regenerations...
Persistent link: https://www.econbiz.de/10011755281
This paper discusses nonparametric kernel regression with the regressor being a \(d\)-dimensional \(\beta\)-null recurrent process in presence of conditional heteroscedasticity. We show that the mean function estimator is consistent with convergence rate \(\sqrt{n(T)h^{d}}\), where \(n(T)\) is...
Persistent link: https://www.econbiz.de/10011254954
This paper develops a sampling algorithm for bandwidth estimation in a nonparametric regression model with continuous and discrete regressors under an unknown error density. The error density is approximated by the kernel density estimator of the unobserved errors, while the regression function...
Persistent link: https://www.econbiz.de/10011755329