Showing 1 - 8 of 8
This paper investigates, in a particular parametric framework, the geometric meaning of joint unpredictability for a bivariate discrete process. In particular, the paper provides a characterization of the joint unpredictability in terms of distance between information sets in an Hilbert space.
Persistent link: https://www.econbiz.de/10010421295
The contribution of this paper is to investigate a particular form of lack of invariance of causality statements to changes in the conditioning information sets. Consider a discrete-time three-dimensional stochastic process z = (x, y1, y2)0. We want to study causality relationships between the...
Persistent link: https://www.econbiz.de/10011995194
In this paper we propose a test for a set of linear restrictions in a Vector Autoregressive Moving Average (VARMA) model. This test is based on the autoregressive metric, a notion of distance between two univariate ARMA models, M0 and M1, introduced by Piccolo in 1990. In particular, we show...
Persistent link: https://www.econbiz.de/10011755267
It is well known that in a vector autoregressive (VAR) model Granger non-causality is characterized by a set of restrictions on the VAR coefficients. This characterization has been derived under the assumption of non-singularity of the covariance matrix of the innovations. This note shows that...
Persistent link: https://www.econbiz.de/10011755279
A distance between pairs of sets of autoregressive moving average (ARMA) processes is proposed. Its main properties are discussed. The paper also shows how the proposed distance finds application in time series analysis. In particular it can be used to evaluate the distance between portfolios of...
Persistent link: https://www.econbiz.de/10011755338
In this paper we propose a test for a set of linear restrictions in a Vector Autoregressive Moving Average (VARMA) model. This test is based on the autoregressive metric, a notion of distance between two univariate ARMA models, <em>M<sub>0</sub></em> and <em>M<sub>1</sub></em>, introduced by Piccolo in 1990. In particular, we show...
Persistent link: https://www.econbiz.de/10011105155
This paper investigates, in a particular parametric framework, the geometric meaning of joint unpredictability for a bivariate discrete process. In particular, the paper provides a characterization of the joint unpredictability in terms of distance between information sets in an Hilbert space.
Persistent link: https://www.econbiz.de/10010710610
It is well known that in a vector autoregressive (VAR) model Granger non-causality is characterized by a set of restrictions on the VAR coefficients. This characterization has been derived under the assumption of non-singularity of the covariance matrix of the innovations. This note shows that...
Persistent link: https://www.econbiz.de/10011249490