Showing 1 - 10 of 11
Four NP-hard optimization problems on graphs are studied: The vertex separator problem, the edge separator problem, the maximum clique problem, and the maximum independent set problem. We show that the vertex separator problem is equivalent to a continuous bilinear quadratic program. This...
Persistent link: https://www.econbiz.de/10011097679
The bipartite boolean quadratic programming problem (BBQP) is a generalization of the well studied boolean quadratic programming problem. The model has a variety of real life applications; however, empirical studies of the model are not available in the literature, except in a few isolated...
Persistent link: https://www.econbiz.de/10011117475
The Standard Quadratic Problem (StQP) is an NP-hard problem with many local minimizers (stationary points). In the literature, heuristics based on unconstrained continuous non-convex formulations have been proposed (Bomze & Palagi, 2005; Bomze, Grippo, & Palagi, 2012) but none dominates the other in...
Persistent link: https://www.econbiz.de/10011117495
This paper proposes a column generation approach based on the Lagrangean relaxation with clusters to solve the unconstrained binary quadratic programming problem that consists of maximizing a quadratic objective function by the choice of suitable values for binary decision variables. The...
Persistent link: https://www.econbiz.de/10010871090
The Continuous Convex Separable Quadratic Knapsack problem (CQKnP) is an easy but useful model that has very many different applications. Although the problem can be solved quickly, it must typically be solved very many times within approaches to (much) more difficult models; hence an efficient...
Persistent link: https://www.econbiz.de/10010871291
This paper provides a canonical dual approach for minimizing a general quadratic function over a set of linear constraints. We first perturb the feasible domain by a quadratic constraint, and then solve a “restricted” canonical dual program of the perturbed problem at each iteration to...
Persistent link: https://www.econbiz.de/10011052648
The quality of the estimation of a latent segment model when only store-level aggregate data is available seems to be dependent on the computational methods selected and in particular on the optimization methodology used to obtain it. Following the stream of work that emphasizes the estimation...
Persistent link: https://www.econbiz.de/10011052809
Interior point methods for optimization have been around for more than 25 years now. Their presence has shaken up the field of optimization. Interior point methods for linear and (convex) quadratic programming display several features which make them particularly attractive for very large scale...
Persistent link: https://www.econbiz.de/10010574208
We consider the problem of fitting a continuous piecewise linear function to a finite set of data points, modeled as a mathematical program with convex objective. We review some fitting problems that can be modeled as convex programs, and then introduce mixed-binary generalizations that allow...
Persistent link: https://www.econbiz.de/10010577614
Probabilistically constrained quadratic programming (PCQP) problems arise naturally from many real-world applications and have posed a great challenge in front of the optimization society for years due to the nonconvex and discrete nature of its feasible set. We consider in this paper a special...
Persistent link: https://www.econbiz.de/10010597655